Calculus 1 Review Flashcards
d/dx (x^n) = ?
nx^(n - 1)
d(sin(x)) = ?
cos(x) • dx
d(cos(x)) = ?
-sin(x) • dx
d(tan(x))= ?
sec^2(x) • dx
d(cot(x)) = ?
-csc^2(x) • dx
d(sec(x)) = ?
sec(x) • tan(x) • dx
d(csc(x)) = ?
-csc(x) • cot(x) • dx
d(e^x) = ?
e^x • dx
d(ln(x)) = ?
dx/x
d(a^u) = ?
a^u • ln(a) • du
d(arcsin(x)) = ?
dx/√(a^2 - x^2)
d(arccos(x)) = ?
-dx/√(a^2 - x^2)
d(arctan(x)) = ?
dx/(a^2 + x^2)
d(arccot(x)) = ?
-dx/(a^2 + x^2)
d(arcsec(x)) = ?
dx/(x√[(x^2) - a^2])
d(arccsc(x)) = ?
-dx/(x√[(x^2) - a^2])
{a • dx = ?
ax + c
{x^n • dx = ?
1/(n + 1) • x^(n+1) + c
{sin(x) • dx = ?
-cos(x) + c
{cos(x) • dx = ?
sin(x) + c
{tan(u) • du = ?
-ln|cos(u)| + c
{cot(u) • du = ?
ln|sin(u)| + c
{sec^2(x) • dx = ?
tan(x) + c
{csc^2(x) • dx = ?
-cot(x) + c
{sec(x) • tan(x) • dx = ?
sec(x) + c
{csc(x) • cot(x) • dx = ?
-csc(x) + c
{a^u • du = ?
(a^u)/(ln(a)) + c
{csc(x) • dx = ?
ln|csc(x) - cot(x)| + c
{sec(x) • dx = ?
ln|sec(x) + tan(x)| + c
{du/(a^2 + u^2) = ?
(1/a) • arctan(u/a) + c
{du/u√(u^2 - a^2) = ?
(1/a) • arcsec(u/a) + c
{e^x • dx = ?
e^x • (1/dx) + c
{du = ?
u + c
{du/u = ?
ln|u| + c
cos[(π/2) - x] = ?
sin(x)
sin[(π/2) - x] = ?
cos(x)