Cardiology - Congenital heart disease Flashcards
What is the definition of congenital heart disease (CHD)?
CHD is an abnormal embyrological cardiac development, or persistence of some parts of the fetal circulation after birth, resulting in structural cardiac defects.
The incidence of major defects is 8/1000 live births. Minor defects are more common, e.g. bicuspid aortic valve affects 2%.
How is congenital heart disease classified?
Classification of CHD is divided into 3 groups:
1) Shunts = communications between the right and left heart
2) Valvular defects = abnormal valve development, usually resulting in valvular stenosis or atresia (= total absence of a valve orifice)
- aortic or pulmonary stenosis
- bicuspid aortic valve; predisposes to later aortic stenosis
- tricuspid atresia
3) Complex lesions = combinations of valvular defects, septal defects, often with failure of normal great vessel and/or cardiac chamber development
- Fallot’s tetralogy
- transposition of the great vessels
- Ebstein’s anomaly
How common are ventricular septal defects?
VSD comprises 25% of CHD. A defect in the interventricular septum allows systolic blood flow from the left to right ventricle (due to the pressure difference present between blood in the 2 chambers). Although more common at birth, most VSDs close spontaneously in childhood, so that the overall incidence in adults is lower than that for ASDs. Only 20% of VSDs occur in isolation; most are associated with other cardiac abnormalities.
How is the size of a VSD related to its clinical effects?
A small defect produces very high velocity jets and a loud murmur (maladie de Roger) that is not of haemodynamic significance.
Large defects may have a quiet murmur and a large left to right shunt. Untreated this may cause pulmonary hypertension and Eisenmenger’s syndrome. Treatment is surgical closure before pulmonary hypertension develops.
There is a high risk of endocarditis (especially in small defects) so antibiotic prophylaxis is essential.
Where is the most common site for a VSD to develop?
VSDs can either be - membranous, infundibular or muscular.
The ventricular septum is usually formed by the fusion of a muscular ridge that grows upwards from the apex of the heart to a thinner membranous partition that grows downwards from the endocardial cushions.The basal (membranous) region is the last part of the septum to develop and is the site of approximately 90% of VSDs.
What is an atrial septal defect?
ASDs comprise 10% of CHD. A defect in the interatrial septum allows shunting of blood from the left to the right side of the heart. The secundum type of ASD is most commonly, accounting for 70% of cases.
Primum ASD accounts for 30% and often involves the atrioventricular valves with mitral or tricuspid regurgitation. These may be associated with other defects including VSD.
How does the interatrial septum develop? What is the difference between an ASD and a patent foramen ovale?
During normal cardiac development, patency is maintained between right and left atria by a series of ostia (primum and secundum) that eventually become the foramen ovale. This arrangement allows oxygenated blood from the maternal circulation to flow from the right to the left atrium thereby sustaining the fetus. At later stages of development, tissue flaps (septum primum, septum secundum) grow to occlude the foramen ovale and in 80% of cases, the higher left sided pressures in the heart that occur at birth permanently fuse the septa against the foramen ovale. In the remaining 20% of cases a patent foramen ovale results.
Although the flap is of adequate size to cover the foramen, the unsealed septa can potentially allow transient right to left blood flow. Paradoxical embolism, defined as venous emboli (e.g. from the deep veins) that enter the arterial circulation may also occur if right sided atrial pressures increase, such as with pulmonary hypertension or a Valsalva manourver. In contrast to a patent foramen ovale, an ASD is an abnormal FIXED opening in the atrial septum that allows unrestricted blood flow between the atrial chambers. A majority (90%) of ASDs are so called ostium secundum defects in which growth of the septum secundum is insufficient to occlude the second ostium.
What are the clinical features of ASDs?
Left to right shunting increases pulmonary blood flow, producing a systolic pulmonary flow murmur, wide fixde splitting of the second heart sound and right ventricular hypertrophy (RVH). An ECG shows right bundle branch block (RBBB) with right axis deviation and RVH (secundum) or left axis deviation with RVH (primum). Supraventricular tacchycardias - e.g. AF - are common. ASDs may be undetected until adult life when they present with exertional dyspnoea and fatigue. The diagnosis is confirmed by transoesophageal cardiac ultrasound. Treatment is closure of the defect, either by surgery or by percutaneous closure device.
Can blood flow through an ASD reverse?
ASDs initially cause left to right shunts, as a consequence of the lower pressures in the pulmonary circulation and the right side of the heart. In general, these defects are well tolerated, especially if they are less than 1 cm in diameter. Even larger lesions do not usually produce any symptoms in childhood. Over time however, chronic volume and pressure overloads can cause pulmonary hypertension.
A general rule with shunt pathophysiology is as follows. If an ASD, VSD or PDA is mild-moderate then left to right shunts occur which increases pulmonary blood flow. The right heart enlarges and hypertrophies as PA pressure rises.
If the shunts are large, irreversible pulmonary hypertension plus right to left shunting (leading to cyanosis) may occur.
What is a patent ductus arteriosus (PDA)?
PDA comprises 15% of CHD and is another form of left to right shunt. The ductus arteriosus fails to close after birth resulting in left to right shunting from the aorta to the pulmonary artery and a continuous (machinery) murmur. A large duct with a significant shunt leads to left ventricular hypertrophy (LVH) and heart failure, or pulmonary hypertension and Eisenmenger’s syndrome. Duct endocarditis is a significant long term risk.
How is PDA treated?
Treatment in neonates involves indomethacin blockade of prostaglandin production, which may provoke duct closure. Ducts remaining open require surgical ligation or percutaneous closure (coil or umbrella devices). Generally speaking, isolated PDAs should be closed as early in life as is feasible, but preservation of ductal patency (by administering prostaglandin E) can be lifesaving when a PDA is the only means to sustain systemic or pulmonary blood flow (e.g. in infants with aortic or pulmonic atresia).
What is Eisenmenger’s syndrome?
This describes irreversible pulmonary hypertension (from the high pulmonary blood flow of large left to right shunts) with shunt reversal (from left to right, to right to left) resulting from high right sided heart pressures. Patients experience worsening symptoms with breathlessness, there is cyanosis, clubbing and signs of severe pulmonary hypertension. Surgical closure of left to right shunts must be undertaken before Eisenmenger’s syndrome develops. The only surgical treatment for established Eisenmenger’s syndrome is heart-lung transplantation.
What is an important feature of right to left shunts?
Cardiac malformations associated with right-to-left shunts are distinguished by early cyanosis. This occurs because poorly oxygenated blood from the right side of the heart flows directly into the arterial circulation. Cyanotic heart diseases all have T in their names (as opposed to D’s which denotes left to right shunting). Two of the most important conditions associated with cyanotic congenital heart disease are tetralogy of Fallot and transposition of the great vessels. Clinical consequences of severe, systemic cyanosis include clubbing (hypertrophic osteoarthropathy), polycythaemia, and paradoxical embolisation.
What is tetralogy of Fallot?
This is the most common “complex” CHD (10% of CHD), involving a combination of VSD with right to left shunting, due to:
- pulmonary stenosis, either infundibular or valve
- right ventricular overload and hypertrophy
- dextro position of the aorta so that it overrides the VSD
What are the clinical features of tetralogy of Fallot?
There is cyanosis, clubbing, signs of RVH and a pulmonary systolic murmur (the large VSD does not generate a murmur). Children with Fallot’s tetralogy experience exertional breathlessness, dizziness and growth retardation.
Squatting kinks the femoral vessels, increasing systemic vascular resistance and reduces the right to left shunt.