Cardiac Form/s,#s, & Def/s Flashcards
Starling’s Law of heart:
= states that the more the myocardium is stretched, up to a certain amount, the more forceful the subsequent contraction will be
Cardiac output formula:
= SV x HR
QRS interval measured:
QRS interval represents
QRS interval range:
QRS interval Q,R,&S:
= distance from 1st deflection of complex to last deflection
= time needed for ventricle depolarization (bundle of his > ventricles)
= 0.04-0.12secs / 1-3SB
= 1st -deflection not >1SB, 1st +deflection, -deflection after R
Ejection Fraction (EF):
<45% usually indicates:
<30%:
= Ratio of blood pumped from the ventricle to the amount remaining @ the end of diastole/ %of blood pumped out from ventricle (60-70%)
=<45% usually indicates in or going to CHF
=<30% in CHF & chronic cardiac crip on oxy
Cardiac depolarization:
RP of Ac:
RP of Cc:
Phases 0-4 of Cc:
= reversal charges of cell membrane inside becomes + & outside -,
= -60 slow Na & fast Ca -40
= -90 Na & -85 gap Junctions fast Na influxes
= 0 depolar, 1 early repolar, 2 plateau + for +, 3 K pumps, 4 refractory
BP form/s:
BP is related to:
= (SV x HR) x SVR or CO x SVR
= CO & peripheral resistance
Stroke volume:
Cardiac Output (CO):
CO form/:
3 factors that affect CO:
Dynamic CO:
= blood amount ejected in 1 contraction> varies 60-100mL 70average
= Amount of blood moved in 1min
= HR X SV -> 5-6 L of blood moved in 1 min
= preload, afterload, contractility
= “1 up & other down”
Cardiac Output:
Cardiac Output Formula:
Blood Pressure formula:
= amount of blood pumped by the heart in 1 min (70mL)
= SV x HR
= CO x SVR
CPP Cerebral Perfusion:
= (MAP-ICP) + 10
MAP:
= (PP/3) + DBP
Pulse pressure:
= SBP-DBP
Pulsus paradoxus
BP drop more than 10→ can indicate severe obstructive lung disease.
QRS sharp edge “knife” bc:
coming from a side of heart
Stroke volume:
3 factors that affect stroke volume:
= amount of blood ejected by heart in 1 contraction, varies 60-100mLs w/ average 70mL
= preload, afterload, & contractility
PRI measured by:
PRI “PR/PRI” interval rep/s:
A normal PRI interval range:
prolonged PRI indicates:
= distance from beginning of P wave to beginning of QRS complex.
= time impulse takes from atria-ventricles “Gatekeeper Gandolf”
= 0.12-0.20 sec / 3-5 SB
= a delay in the AV node & possible HB
Pulse pressure:
MAP:
CPP Cerebral Perfusion:
= SBP-DBP
= (PP/3) + DBP
= (MAP-ICP) + 10
Afterload:
= resistance against which the heart must pump against afterload become increased w/ increased ventricular workload
Poiseuille’s law:
Example:
= vessel w/ relative radius of 1 would transport 1mL per min at BP difference of 100mmHg. Keep pressure constant
= Less blood = vaso-press
Starling’s Law of heart:
= states that the more the myocardium is stretched, up to a certain amount, the more forceful the subsequent contraction will be
% of drug concentration=
Grams in 100mLs
(60%) Fluid compartments % of water:
45% intracellular
15% extracellular (outside cell)
Interstitial 10.5% Intravascular 4.5%
(ECG Paper) (Horizontal Boxes) small box duration:
5 small boxes makes:
Each large box duration:
(Vertical Boxes) Each small box volt & measurement:
5 small boxes makes:
Each large box voltage:
2 large boxes equivalent:
= 0.04 sec
= 1 large box
= 0.20 sec
= 0.1 mV & 1 mm
= 1 large box
= 0.5 mV
= 1 mV & 10mm
(ECG Vertical Boxes) Each small box is & what:
5 small boxes equal:
Each large box is:
2 large boxes equal
= Each small box 1 mm & 0.1mV
= 1 large box
= 0.5 mV & 5mm
= 1mV & 10mm
Einthoven’s triangle(Bipolar/limb leads) leads 2 views:
Lead 2 Negative:
Lead 2 Positive:
= Inferior wall diagonally towards left foot
= Right Arm
= Left Leg
Einthoven’s triangle(Bipolar/limb leads) leads 1 views:
Lead 1 Negative:
Lead 1 Positive:
= Left Lateral wall
= Right Arm
= Left Arm
Einthoven’s triangle(Bipolar/limb leads) leads 3 views:
Lead 3 Negative:
Lead 3 Positive:
= inferior (down & rightward) 50% MI has R ventricle Infarction
= Left Arm
= Left Leg
Limb leads) placement:
positive to negative makes wave:
positive to negative makes wave:
= mid forearm on M. & inside of calf (if amputee/ go less distally)
= positive wave
= negative wave
P wave) Limb leads amplitude:
Precordial “chest” leads amplitude:
= <2.5mm in limb leads Avl (2.5mV)
= <1.5mm in precordial (1.5mV)
1st line IV med in cardiac arrest
Epi
1st line med in cardiac arrest
oxygen
A normal P wave in Precordial leads should be:
A normal P wave Limb leads should be:
= nice & round w/ amplitude <1.5mm
= nice & round w/ amplitude <2.5mm
A normal PRI should be between
A normal QRS duration should be between:
= 0.12-0.20 seconds
= 0.04-0.12 seconds.
Absolute refractory period:
Relative refractory period:
= Apex of T wave Q-T wave apex of wave: ventricle not ready to work
= T wave top to end of T wave: (commodo cordis) cells not repolarized (torsades de pointes more dead from repolarization not in sync)
Normal T Wave in any limb lead should have a max amplitude of:
Normal T Wave in any chest lead should have a max amplitude of:
= 5 mm
= 10 mm
Leads V3 & V4 view
Leads V1 & V2 view
Leads 2,3, & aVF view
Leads 1, aVL, V5, V6 view
= Anterior
= Septal
= Inferior
= Lateral
RP of a cardiac autorhythmic cell is:
AP of a cardiac autorhythmic cell is:
Influx of what causes depolarization of autorhythmic cells:
Efflux of what ion causes repolarization:
= -60mVs
= -40mVs
= Calcium
= Potassium
Shock & perfusion definitions:
= Perfusion: Adequate supply of well oxygenated blood & nutrients to all vital organs
= Shock: body’s lack of perfusion
Blood Pressure formula:
= (SV x HR) x SVR / CO x SVR
Dynamic CO:
=1 up other down, L diastole P = L afterload, PVR pulmonary & oil
Cardiac Output Formula:
Blood Pressure formula:
= amount of blood pumped by the heart in 1 min (70mL)
= SV x HR
= (SV x HR) x SVR
Shock) Cardiogenic:
Types & defined:
= Pump prob/ not working
= Intrinsic: problem from w/in heart EX MI
& Extrinsic: pob from outside hurting heart EX TPT
Celsius# to degrees Fahrenheit form
Fahrenheit# to Celsius form
C# to F=(C# -32) / 1.8
F# to C= (1.8 x F) + 32
(Electrolytes affects) Cl
Na
K
Ca
Mg
= Cl picks up Co2 (shift) to keep neutrality
= depolarizing myocardium
= depolarization & majority myocardial contractile
= influences repolarizations
= regulates contractility & rhythm
(ECG Horizontal Boxes) small box is how long
5 small boxes:
Each large box is how long
= 0.04 sec
= 1 large box
= 0.20 sec