C3 Produit Scalaire Et Orthogonalité Dans R^2 Flashcards

1
Q

(u,v) (angle -> 👒 dessus)

A

-(v,u) (angle -> chapeau dessus)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

(u,u) (angle -> chapeau)

A

=0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

(u, -u) (angle -> 🎩 dessus)

A

= pi

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

cos^2(@) + sin^2(@) = ?

A

= 1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

cos (@+ 2pi)

A

cos (@+ 2pi) = cos(@)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

sin (@+ 2pi)

A

sin (@+ 2pi) = sin (@)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

cos (-@)

A

cos (@)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

sin (-@)

A
  • sin (@)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

cos (@+ pi)

A
  • cos(@)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

sin (@+ pi)

A
  • sin (@)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

cos (@ + pi/2)

A

-sin(@)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

sin(@ + pi/2)

A

cos (@)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

cos (pi/2 - @)

A

sin (@)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

sin (pi/2 - @)

A

Flofloooo

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

cos (pi - @)

A
  • cos(@)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

sin (pi - @)

A

sin (@)

17
Q

calculer < u,v > ?

A

= AC.AH
OU
= llullllvllcos (@)

18
Q

Symétrie du produit scalaire?

A

< u,v > = < v,u >

19
Q

(<u>)^2 </u>

A

llull^2 * llvll^2

20
Q

< u,u > ?

A

llull^2

21
Q

Orthogonalité du produit scalaire?

A
  • 1 des 2 est nul

- aucun des 2 est nul et direction sont orthogonales (< u,v > = 0)

22
Q

def cercle trigonométrique?

A

on appelle cercle trigonométrique un cercle de rayon 1, orienté dans le sens direct

23
Q

longueur d’un cercle trigo?

A

2pi

24
Q

def mesure d’un angle?

A

la mesure d’un angle (non-orienté) en radian est définie comme la longueur de l’arc IM.

25
Q

def angle orienté?

A

l’angle (u,v) (flèche et chapeau) formé par les vecteurs u et v est un angle orienté. L’angle (v,u) est l’angle orienté de sens contraire vérifiant (v,u) = -(u,v)