BKM Chapter 16 Flashcards

1
Q

Properties of bond prices (6, aka bond-pricing relationships)

(BKM - 16)

A

bond prices are:

  1. inversely related to yields
  2. more sensitive to decreases in yields than increases
  3. long-term bond prices are more sensitive to yield changes than short-term bond prices
  4. sensitivity of bond prices to yield changes increases at a decreasing rate as maturity increases
  5. prices of low-coupon bonds are more sensitive to change in yield than prices of high-coupon bonds
  6. sensitivity of bond price to change in yield is inversely related to the yield at which it is currently selling
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Reason bond prices for long-term bonds are more sensitive to yield changes

(BKM - 16)

A

more distant CFs will be more heavily discounted, resulting in a larger price reduction

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Effective maturity (aka Macaulay’s duration or duration)

BKM - 16

A

measure of interest rate risk/sensitivity

effective maturity = weighted average maturity of all CFs where the weights are the discounted CFs / total bond price

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Modified duration (D*)

BKM - 16

A

D* = D / (1 + y / k)

where y = YTM

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Linear approximation of the change in bond price from a change in interest rates (% change in bond price) (2 formulas)

(BKM - 16)

A

% change in bond price = - D * (change in y / (1 + y / k))

or = - modified duration * change in y

**works best for small changes in yields

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Duration rules (5)

BKM - 16

A
  1. for a zero-coupon bond, duration = maturity
  2. holding maturity constant, duration is lower when coupon rates are higher
  3. holding coupon rates constant, duration increases as maturity increases (always true for bonds selling at or above par value)
  4. holding other factors constant, duration increases as YTM decreases
  5. duration of a perpetuity (w/maturity = infinity) = (1 + y) / y
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

PV(perpetuity)

BKM - 16

A

PV(perpetuity) = perpetuity payment / y

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Duration and coupon rate relationship for perpetuities

BKM - 16

A

duration and coupon rate are independent - ONLY true for perpetuities

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Duration linear approximation to change in bond prices and actual change in bond prices

(BKM - 16)

A

duration approximation always understates bond price (b/c the actual price change is convex)

understates the increase in bond price when yield decreases &
overstates the decrease in bond price when yield increases

*curves are tangent at the initial yield

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Convexity adjustment to the duration price change approximation

(BKM - 16)

A

% change in bond price = -modified duration * change in y + .5 * convexity * (change in y)^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Convexity (formula for the convexity variable in the convexity adjustment to the duration approximation)

(BKM - 16)

A

Convexity = [sum over all times, t, of PV(CF(t)) * (t^2 + t / k)] / (Price * (1 + y / k)^2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Reason that convexity is desirable

BKM - 16

A

because convex bonds increase more in price when yields decrease than they decrease in price when yields increase ( = attractive asymmetry)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

“Price” for greater convexity

BKM - 16

A

bond prices are more expensive and they tend to have lower yields

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Convexity of callable bonds and duration approximation

BKM - 16

A

has a region of negative convexity with low interest rates near the call price (max price at y intercept) and positive convexity at higher interest rates

in the region of negative convexity, the duration approximation overstates bond value

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Effective duration for callable bonds

BKM - 16

A

cannot use the normal effective duration b/c future CFs are unknown (b/c the bond can be terminated)

effective duration = ((max price - min price) / current price) / (max rate - min rate)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Differences between the effective duration for callable bonds and the normal Macaulay duration (2)

(BKM - 16)

A
  1. uses the change in interest rate b/c maturity is variable
  2. relies on option pricing methodology that accounts for interest rate variability
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Interpretation of the effective duration for callable bonds

BKM - 16

A

bond price changes by the effective duration % for a r percentage point change in market interest rates around current values

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Mortgage-backed securities (aka pass-throughs)

BKM - 16

A

many mortgages pooled together and sold on the fixed-income market

homeowner > pays lender > pays federal agency > pays purchaser of MBS

early termination of mortgage loan from a homeowners option to refinance is similar to a call provision for a bond

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Main difference b/w mortgage-backed securities and callable bonds

(BKM - 16)

A

“call price” = remaining balance of the mortgage loan, but because homeowners do not always refinance, it’s possible for the bond price > principal balance

> > means that the call price is not a firm ceiling on bond price

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Collateralized mortgage operations (CMOs) and how payments work

(BKM - 16)

A

redirection of CF streams from mortgage-backed securities into separate securities called tranches with varying risk exposure based on seniority and duration

each tranche receives share of the total interest paid based on the outstanding balance of the tranche but the principal payments are paid off in the order of seniority

21
Q

Total interest for tranche payments

BKM - 16

A

total interest = total outstanding loan balance from the prior period * rate / frequency of payment

22
Q

Total principal for tranche payments

BKM - 16

A

total principal = total payment - total interest

23
Q

Total outstanding balance for tranche payments

BKM - 16

A

total outstanding loan balance = total outstanding loan balance from the prior period - total principal paid

24
Q

Primary use case for tranches

BKM - 16

A

to allocate interest rate risk (and credit risk, if applicable) across classes

(low/no credit risk with agency-sponsored MBS)

25
Q

Reasons highest seniority tranches are less risky (2)

BKM - 16

A
  1. less exposure to default risk b/c they receive principal payments first
  2. less exposure to interest rate risk b/c they have shorter duration
26
Q

Classes of passive management (2)

BKM - 16

A
  1. indexing

2. immunization

27
Q

Bond indexing

BKM - 16

A

type of passive management that attempts to replicate the performance of a broad bond index with the same risk-reward profile of the bond index it is replicating

28
Q

Immunization

BKM - 16

A

type of passive management that protects the investor from interest rate fluctuations by creating a zero-risk profile

sets duration(asset portfolio) = duration(liability portfolio)

29
Q

Challenges of constructing an indexed bond portfolio (3)

BKM - 16

A
  1. bond indexes can contain thousands of securities, making it difficult to purchase each security in the index in proportion to its market value
  2. market value of some bonds may be difficult to determine due to low trade volume
  3. difficult to keep the portfolio balanced b/c bonds are constantly dropped and added to the index
30
Q

Use of stratified sampling in bond indexing (aka a cellular approach)

(BKM - 16)

A

used to ensure the portfolio has a similar composition to the index for important variables such as maturity, coupon rate, credit risk, etc.

> > used b/c it is not feasible to perfectly replicate a broad bond index

31
Q

Reasons for immunization (2)

BKM - 16

A
  1. protect net worth (ex: banks)

2. protect the future value of the portfolio to ensure future obligations are met (ex: pension funds)

32
Q

Re-balancing of immunized portfolios

BKM - 16

A

portfolio must be re-balanced with any changes in duration or interest rates

(means calculating new weights so that the asset duration = liability duration)

33
Q

Offsetting nature of price risk and reinvestment risk

BKM - 16

A

when interest rates increase:
bond value decreases resulting in a capital loss (price risk)
and investment income increases from reinvesting coupons at a higher interest rate (reinvestment risk)

34
Q

Problems with immunization (4)

BKM - 16

A
  1. perfect immunization requires continuous rebalancing, which may not be practical due to high transaction costs
  2. requires a flat yield curve
  3. only works with parallel shifts to the yield curve (which is unrealistic)
  4. may not work in an inflationary environment
35
Q

Modification to duration required for immunization when the yield curve is not flat

(BKM - 16)

A

use the spot rate for each CF

36
Q

Cash flow matching and simple example

BKM - 16

A

when CFs from the bond and the obligation exactly offset

ex: zero-coupon bond with face value = obligation

37
Q

Dedication strategy

BKM - 16

A

implementing CF matching on a multi-period basis by using zero-coupon bonds

38
Q

Advantage of a dedication strategy

BKM - 16

A

allows immunization without the need to re-balance the portfolio

39
Q

Reasons CF matching is not widely used for immunization (2)

BKM - 16

A
  1. imposes constraints on bond selection
  2. required securities may not exist (e.g. pension fund obligations may require securities with extremely long durations)
40
Q

Sources of potential value in active bond management (2)

BKM - 16

A
  1. interest rate forecasting

2. security mis-pricing

41
Q

Interest rate forecasting for active bond management

BKM - 16

A

attempts to forecast interest rates so that if rates are expected to fall portfolio managers can adjust the portfolio to increase duration

42
Q

Security mis-pricing in active bond management

BKM - 16

A

managers can theoretically profit from identifying and buying under-priced bonds

*only profit if the rest of the market does not identify mis-pricing

43
Q

Types of bond swaps (5)

BKM - 16

A
  1. substitution swap
  2. intermarket spread swap
  3. rate anticipation swap
  4. pure yield pickup swap
  5. tax swap
44
Q

Substitution swap and when to use it

BKM - 16

A

exchanges 1 bond for a nearly identical bond with equal coupons, maturity, quality, features, and provisions

use when: investor believes the bond is mis-priced and the price difference can be a profit opportunity

45
Q

Intermarket spread swap

BKM - 16

A

shifts b/w bond sectors when the yield spread seems out of line

sectors = corporate vs. government bonds

46
Q

Rate anticipation swap and when to use it

BKM - 16

A

changes bond duration depending on expected interest rate movement

use when: if interest rates are expected to increase, swap long-duration bonds for short-duration bonds

47
Q

Pure yield pickup swap

BKM - 16

A

shifts portfolio into higher yield bonds

48
Q

Tax swap

BKM - 16

A

shifting into different bonds to exploit tax advantages

ex: tax benefit from capital losses