Autonomic Control of Blood Pressure Flashcards
what is the single most important mechanism providing short-term regulation of arterial pressure?
the arterial baroreceptor, most importantly high-pressure carotid sinus, then aortic arch
how is MAP monitored?
- high-pressure arterial baroreceptors (on arterial side, most importantly carotid sinus then aortic arch)
- renal juxtaglomerular apparatus
- low-pressure baroreceptors (AKA volume or cardiopulmonary receptors, on venous side and atrium)
- chemoreceptors (although mostly for respiratory control)
how are adjustments to MAP made?
via the ANS and release of specific hormones
where do all baroreceptors feed back to?
the nucleus tractus solitarius (NTS) in medulla
where do carotid baroreceptors feed back to?
from carotid sinus; transmitted thru Hering’s nerve to CN IX in high neck, then to NTS
where do aortic baroreceptors feed back to?
from aortic arch; transmitted thru CN X to NTS
what happens if there is stretching of distensible vessel walls at the high-pressure baroreceptors?
stretching at carotid sinus and oartic arch causes reflex vasodilation and bradycardia
peripheral chemoreceptors
located in carotid and aortic bodies, and in close contact with arterial blood
- when arterial pressure falls below a critical level, the receptors are stimulated b/c less blood flow causes less O2
- signals transmitted from chemoreceptors and baroreceptors pass thru Hering’s and IX nerves (if carotid) and vagus (if aortic) to NTS to elevate MAP back to normal
is the chemoreceptor reflex a powerful MAP controller?
not until MAP falls below 80 mmHg (like during hemorrhage)
-thus it’s at lower pressures that this reflex becomes important to prevent further decreases in MAP
central chemoreceptors
in the medulla
- sensitive to decreases in brain pH reflecting increase in arterial PCO2
- causes increase in SNS output
what do low PO2 and high PCO2 act on, what what is their effect?
low PO2 acts on peripheral chemoreceptors, and high PCO2 acts on central chemoreceptor
-they act in concert to enhance vasoconstriction
low-pressure baroreceptors
in cardiovascular system
-detect changes in venous pressure/volu
what happens to baroreceptor APs and receptor potentials in response to higher pressure?
higher pressure (steps) –> higher receptor potential (depolarization) –> more frequent APs
structure of baroreceptors in carotid sinus and aortic arch, and what are they sensitive to?
branched terminals of myelinated and unmyelinated sensory nerve fibers, intermeshed within elastic layers
-they are sensitive to stretch
what does an increase in transmural pressure difference do?
enlarges the vessel, deforming the receptors, and increasing firing rate of the baroreceptor’s sensory nerve
-the signal is frequency modulated
to what do baroreceptors respond to, and when are they most sensitive?
they respond rapidly to changes in MAP and are most sensitive in normal operating range ~100 mmHg for carotid sinus, and 130 mmHg for aortic arch (less sensitive)
-the slope of dI/dP is maximum at this time
when do carotid sinus baroreceptors not work?
they are not stimulated by pressures between 0 to 50 or 60 mmHg
-above these levels, they respond progressively more rapidly and reach a maximum at 180 mmHg, and are optimal at 100 mmHg
what happens to the rate of impulse firing during systole and diastole?
the rate increases in the fraction of a second during each systole, and decreases again during diastole
do baroreceptors respond more to rapidly changing pressures or stationary pressures?
they respond more to rapidly changing pressures
-ex: if MAP is 150 mmHg, but is rising rapidly, the rate of impulse transmission may be twice that when the pressure is stationary at 150 mmHg
what happens to the baroreceptor reflex in HTN?
since it adapts to long-term changes in MAP, the curve is parallel and shifts to right (meaning it’s not as sensitive)
what would happen to MAP if baroreceptors were absent?
MAP would fluctuate wildly if the baroreceptors were denervated, and no longer be constantly monitored
-the MAP would have a very wide range, instead of the usual ~100mmHg
what is the primary purpose of arterial baroreceptor system?
reduce the minute-by-minute variation in arterial pressure to about one-third that which would occur if the baroreceptor system was not present
in general, how many vessels does the SNS innervate? what does this mean?
in most tissues they innervate all vessels except capillaries
- precapillary spinchters and metarterials are innervated in some, but not as densely
- innervation of small arteries/arterioles allows SNS stimulation to increase R and decrease Q
- innervation of large vessels, especially veins, allows SNS to vasoconstrict to push blood into heart to regulate CO (decrease compliance of vessels)
what does the vasoconstrictor area of the vasomotor center do?
it transmits signals continuously to the sympathetic vasoconstrictor nerve fibers over the entire body
- causes slow firing of these fibers at a rate of about 1/2 to 2 impulses per second
- these impulses normally maintain a partial state of contraction in blood vessels, called vasomotor tone