Antimircobials Flashcards
Folic acid synthesis (DNA methylation) inhibitors
Sulfonamides
Trimethoprim
DNA topoisomerase inhibitor
Fluoroquinolones
Damages DNA
Metronidazole
mRNA synthesis (RNA polymerase) inhibitor
Rifampin
Protein synthesis (50S subunit) inhibitors
Chloramphenicol, Clindamycin, Linezolid
Macrolides
Streptogramins
Protein synthesis (30S subunit) inhibitors
Aminoglycosides
Tetracyclines
Peptidoglycan cross-linking (of the cell wall) inhibitors
Penicillinase-sensitive penicillins Penicillinase-resistant penicillins Antipseduomonals Cephalosporins (I-V) Carbapenems Monobactams (Aztreonam)
Peptidoglycan synthesis (of the cell wall) inhibitors
Glycopeptides (bacitracin, vancomycin)
Penicillinase-sensitive penicillins
Amoxicillin
Ampicillin
Penicillin G, V
Pencillinase-resistant penicillins
Dicloxacillin
Nafcillin
Oxacillin
Antipseudomonals
Piperacillin
Ticarcillin
Cephalosporins (I-V)
1st-Cefazolin, Cephalexin (1 ZObra named LEXI) 2nd-Cefoxitin, Cefaclor, Cefuroxime (2 FOXes went into the FACtory and came out as FUR) 3rd-Ceftriaxone (3 taxidermists TRI to sell a DIMEsaur) 4th-Cefepime (I'm + 4 PIMEcones turned green/blue) 5th-Ceftaroline (5 TARred birds are MRSArible)
Carbapenems
Doripenem
Imipenem
Meropenem
Ertapenem
Aminoglycosides
Gentamicin Neomycin Amikacin Tobramycin Streptomycin Min (amino) GNATS caNNOT kill anerobes
Tetracyclines
Doxycline
Minocyline
Tetracycline
Macrolides
Azithromycin
Clarithromycin
Erthyromycin
Streptogramins
Dalfopristin
Quinupristin
Fluoroquinolones
Ciprofloxacin
Levofloxacin
Sulfonamides
Sulfadiazine
Sulfamethoxazole
Sulfisoxazole
Penicillin G, V
MOA: B-lactam antibiotics: bind penicillin-binding proteins (transpeptidases that build cell walls)
Use: Mostly used for Gram + (also N. meningitidis, T. pallidum)
Tox: Hypersensitivity reactions, hemolytic anemia
Penicillinase (a B-lactamase) sensitive
Amoxicillin, ampicillin
MOA: Broad spectrum B-lactam antibiotics
Oral bioavailability: AmOxicillin>ampicillin
Use: H. influenzae, H. pylori, E. Coli Listeria, Proteus, Salmonella, Shigella, Enterococci (HHELPSS kill enterococci)
Tox: Hypersensitivity reactions, rash, pseudomembranous colitis
Penicillinase sensitive: Combine w/ clavulanic acid to inhibit penicillinase
Dicloxacillin, oxacillin, nafcillin
“DON has a narrow mind and only Staphs certain people, even though he is not MRSAble”
MOA: Narrow spectrum B-lactam antibiotics
Use: S. aureus (except MRSA)
Tox: Hypersensitivity reactions, interstitial nephritis
Penicillinase resistant (bulky R-group blocks B-lactamase
Piperacillin, ticarcillin
“PIPER and TICA are on an EXTENDED jail sentence for using NEGATIVE language and hurting people with RODS
MOA: Antipseudomonals: Extended spectrum B-lactam antibiotics
Use: Pseudomonas and gram - rods
Tox: Hypersensitivity reactions
Penicillinase sensitive: Combine w/ clavulanic acid to inhibit penicillinase
B-lactamase inhibitors
Clavulanic acid, sulbactam, tazobactam (CAST)
Added to penicillin antibiotics to protect the antibiotic from destruction by B-lactamase (penicillinase)
Cephalosporin-1st generation
Cefazolin, cephaLEXIn (1 ZObra named LEXI)
MOA: B-lactams, peptidoglycan cross-linking inhibitors (bind PBP), less susceptible to penicillinases. Bactericidal.
Use: Gram + cocci, Proteus, E. coli, Klebsiella, Pre-surgery prophylaxis to prevent S. aureus wound infections
Tox: Hypersensitivity reactions, autoimmune hemolytic anemia, disulfiram-like reaction, vitamin K deficiency, exhibit cross-reactivity with penicilllins,
increases nephrotoxicity of aminoglycosides
Cephalosporin-2nd generation
Cefoxitin, cefaclor, cefuroxime (2 FOXes go to the FACtory and come out as FUR)
MOA: B-lactams, peptidoglycan cross-linking inhibitors (bind PBP), less susceptible to penicillinases. Bactericidal.
Use: Gram + cocci, H. influenzae, Enterobacter aerogenes, Neisseria spp., Proteus mirabilis, E. Coli, Klebsiella, Serratia marcescens
Tox: Hypersensitivity reactions, autoimmune hemolytic anemia, disulfiram-like reaction, vitamin K deficiency, exhibit cross-reactivity with penicilllins,
increases nephrotoxicity of aminoglycosides
Cephalosporin-3rd generation
Cefotaxime, Ceftriaxone, , cefazidime (3 TAXidermists TRI to sell a DIMEsaur)
MOA: B-lactams, peptidoglycan cross-linking inhibitors (bind PBP), less susceptible to penicillinases. Bactericidal.
Use: Serious gram - infections resistant to other B-lactams
Ceftriazone-meningitis, gonorrhea, disseminated lyme dz
Ceftazidime-Pseudomonas
Tox: Hypersensitivity reactions, autoimmune hemolytic anemia, disulfiram-like reaction, vitamin K deficiency, exhibit cross-reactivity with penicilllins,
increases nephrotoxicity of aminoglycosides
Cephalosporin-4th generation
CefePIME (I’m +/- (unsure) if 4 PIMEcones turned green/blue)
MOA: B-lactams, peptidoglycan cross-linking inhibitors (bind PBP), less susceptible to penicillinases. Bactericidal.
Use: gram - org., esp Pseudomonas, gram + org.
Tox: Hypersensitivity reactions, autoimmune hemolytic anemia, disulfiram-like reaction, vitamin K deficiency, exhibit cross-reactivity with penicilllins,
increases nephrotoxicity of aminoglycosides
Cephalosporin-5th generation
CefTARoline (5 TARred birds are MRSArible)
MOA: B-lactams, peptidoglycan cross-linking inhibitors (bind PBP), less susceptible to penicillinases. Bactericidal.
Use: Broad gram + and gram - org., including MRSA
Tox: Hypersensitivity reactions, autoimmune hemolytic anemia, disulfiram-like reaction, vitamin K deficiency, exhibit cross-reactivity with penicilllins,
increases nephrotoxicity of aminoglycosides
Mechanism of resistance to cephalosporins
Structural change in penicillin-binding proteins (transpeptidases)
CarbaPENEMs
Imipenem, meropenem, ertapenem, doripenem
MOA: B-lactams, peptidoglycan cross-linking inhibitors (bind PBP)
Use: Gram + cocci, gram - rods, anaerobes
Wide spectrum, but side effects that limit use to last resort
Tox: GI distress, skin rash, and CNS toxicity (seizures) at high plasma levels
Meropenem
Carbapenem: has a decrease risk of seizures and stable to dehydopeptidase I
Imipenem
Carbapenem: broad spectrum, B-lactamase resistant.
Take with cilastatin (inhibitor of renal dehydropeptidase I) to decrease inactivation of drug in renal tubules.
Monobactams
Aztreonam
MOA: B-lactam, peptidoglycan cross-linking inhibitors (bind PBP3).
Less susceptible to B-lactamases & synergistic with aminoglycosides.
No cross-allergenicity with penicillins
Use: Gram - rods ONLY. For penicillin-allergic patients and those with renal insufficiency who can’t use aminoglycosides
Tox: Occasional GI upset
Vancomycin
MOA: Inhibits cell wall peptidoglycan formation by binding D-ala D-ala portion of cell wall precursors. Bactericidal. B-lactamase resistant
Use: Gram + ONLY. Serious, multidrug resistant organisms, including MRSA, S. epidermis, sensitive Enterococcus spp, and C. Diff. (oral dose for pseudomembranous colitis)
Tox: Well tolerated except NOT. Nephrotoxicity, Ototoxicity, Thrombophlebitis. Red man syndrome (prevent with H1 antagonist and slow infusion)
Resistance: bacterial aa modification, D-ala D ala-> D-ala D-lac
Aminoglycosides: names
Gentamicin, neomycin, amikacin, tobramycin, streptomycin
Aminoglycosides: MOA
Bactericidal. Irreversible inhibition of initiation complex through binding of the 30s subunit. Misreading of mRNA. Ineffective against anaerobes (needs 02)
Aminoglycosides: Use
Severe gram - rod infections. Synergistic with B-lactam antibiotics. Neomycin for bowel surgery
Aminoglycosides: Toxicity and resistance
Tox: Nephrotoxicity, neuromuscular blockade, ototoxicity, (esp. with loop diuretic), teratogen.
Resistance: Bacterial transferase enzymes inactivate the drug by acteylation, phosphorylation, adenylation
Tertracycline: names
Tetracyline, doxycline, minocycline
Tertracycline: MOA
Bacteriostatic: binds to 30S and presents tRNA binding.
CNS penetration.
Can’t take with milk (ca2+), anatacids (Ca2+/Mg2+) or iron containing preparations. All inhibit absorption.
Tertracycline: Clinical use
Borrelia burgdorferi. M. pneumoniae. Rickettsia. Chlamydia. Acne.
BM CAR makes your teeth YELLOW
Tertracycline: toxicity
GI distress, discoloration of teeth, inhibition of bone growth in children, photosensitivity, contraindicated in pregnancy..
Doxycycline is fecally eliminated so can give with renal failure.
Tertracycline: Mechanism of resistance
Decrease uptake or ^ efflux out of bacterial cells by plasmid-encoded transport pumps
Chloramphenicol: MOA
Blocks peptidyltransferase at 50S ribosomal subunit.
Bacteriostatic
Chloramphenicol: Clinical use
Meningitis (H. influ, N. meningitidis, S. pneumo)
Rocky mountain spotted fever (Rickettsia rickettsii)
Chloramphenicol: toxicity
Anemia (dose dependent), aplastic anemia (dose independent), gray baby syndrome (premature infants lack UDP-glucuronyl transferase)
Chloramphenicol: Mechanism of resistance
Plasmid-encoded acteryltransferase that inactivates the drug
Clindamycin: MOA
Blocks peptide transfer at 50S ribosomal subunit.
Bacteriostatic
Clindamycin: Clinical use
“Clinda the good witch kills the anaemy (anaerobic) above the diaphragm”
Anaerobic infections (Bacteriodes, C. perfringens) due to aspiration pneumonia, lung abscess, and oral infection.
Also effective against group A strep
*Treats anaerobic infections above the diaphragm. Metronidazole treats anaerobic infections below the diaphragm
Clindamycin: toxicity
Pseduomembranous colitis (C. diff overgrowth), fever, diarrhea
Linezolid: MOA
Inhibits protein synthesis by binding to 50S subunit and preventing formation of the initiation complex
Linezolid: Clinical use
Gram+ species including MRSA and VRE
Linezolid: toxicity
Bone marrow suppression (thrombocytopenia)
Peripheral neuropathy
Serotonin syndrome
Linezolid: Mechanism of resistance
Point mutation of ribosomal RNA
Macrolides: names
Azithromycin, Clarithromycin, Erythromycin
Macrolides: MOA
Inhibit protein synthesis by blocking translocation (macroslides). Bind to 23S rRNA of the 50S ribosomal subunit
Macrolides: Clinical use
Atypical pneumonias (Mycoplasma, chlamydia, legionella)
Macrolides: toxicity
MACRO: Motility issues in GI, Arrhythmia (prolonged QT interval), acute Cholestatic hepatitis, Rash, eOsinophilia
Increases serum theophyllines, oral anticoagulants.
Clarithro and Erythro inhibit p450
Macrolides: mechanism of resistance
Methylation of 23S rRNA binding site prevents binding of drug
Trimethoprim: MOA
Inhibits bacterial dihydrofolate reductase.
Bacteriostatic
Trimethoprim: Clinical use
Use with sulfonamides (TMP-SMX)–>sequential block of folate synthesis.
UTIs, shigella, Salmonella, P. Jirovecii
Prophylaxis for P. Jirovecii and toxoplasmosis
Trimethoprim: toxicity
Megaloblastic anemia, leukopenia, granulocytopenia
TriMethoPrim: Treats Marrow Poorly
Sulfonamides: names
Sulfamethoxazole (SMX), sulfisoxazole, sulfadiazine
Sulfonamides: MOA
Inhibits folate synthesis by inhibiting dihydropteroate synthase (PABA–>dihydropteroic acid)
Bacteriostatic alone. Bacteriocidal with TMP.
Dapsone for leprosy works in a similar way
Sulfonamides: clinical use
Gram positives, gram negatives, Nocardia, Chlamydia
Triple sulfas or SMX for simple UTI
Sulfonamides: toxicity
Hypersensitivity reactions, hemolysis if G6PD deficient.
Nephrotoxicity (tubulointerstitial nephritis), photosensitivity, kernicterus (bilirubin in the brain) in infants, displace other drugs from albumin (warfarin)
Sulfonamides: Mechanism of resistance
Altered enzyme (bacterial dihydropteroate synthase), decrease uptake, ^PABA synthesis