6 Differentiation Flashcards
how to differentiate y=x^n
dy/dx = nx^(n-1)
if f’(a) >0
when x=a, f is increasing
if f’(a) >0
when x=a, f is decreasing
if f(x)=3e^x -1/x show f(x) in increasing for x>0
f’(x) = 3e^x + 1/x^2
x>0 so e^x >0 and 1/x^2 >0
so 3e^x +1/x^2 >0
if f(x) =lnx what is f'(x)= and why
1/x
beacause its gradient is the reciprocal of y=e^x
dx/dy=
1/dy/dx
Ln3 what is dy/dx
1/0
Inverse of f(x) = e^x + 1
X=e^y + 1
Ln(x-1) = f^-1(x)
F(x) = ln3x -6
F^-1(x)=
Y+6 =ln(3x)
=1/3(e^x+6)
G(x) = 2e^(x-5) +3
G^-1(x) =
Range And domain
G^-1(x) = ln(1/2(x-3)) +5
Gs range= g(x) >3
G-1s domain = g-1 is x>3
Domain oF g(x) = xER
Range of g-1 — g-1 ER
F(x)= 5x^4 -ln(5x^4)
F’(x)=
F’(x)= 20x^3 - 4/x
Find stationary of y= 8x^2 -ln(x)
Dy/dx =0
X=+- 1/4
y= 8/16 -ln1/4 =1.886
-1/4 doses not exist because ln(-) is not possible
S.p (0.25, 1.886)
D2y/dx2 = 16 + 1/x^2
x=0.25
16 + 1/0.25^2 =32
32> 0 so minimum point
Product rule
Y can be split into u and v
U Du/dx
V. Dv/dx
Cross multiply
V du/dx + u dv/dx
differentiate y= x^1/2 lnx
u=x^1/2, du/dx = 1/2x^-1/2
v=lnx, du/dx=1/x
rearranged to x^-1/2(1/2lnx+1)
stationary points of x^2.e^x
find its type
dy/dx= e^x(2+x)x
dy/dx=0
e^x never equals 0
x=0
x=-2
x=0, y=0
x=-2, y=4e^-2
d2y/dx2 = e^x(4x+x^2+2)
x=0, d2y/dx2=2, 2>0 minimum
x=-2, d2y/dx2 =4e^-2, 4w^-2<0 maximum