5 natural logarithms and y=e^x Flashcards
what does e actually equal
1/0! + 1/1! + 1/2! +1/3! + ……
if 2=e^x
what does x=
x=loge2
x=ln2
e^x =y
x=
x=lny
e^lny = y
x=
x=lne^x
lna +lnb=
lnab
lna-lnb=
ln(a/b)
lna^k=
klna
lnx^3
x=
x=e^(7/3)
4ln(x-1) -lnx =
ln((x-1)^4/lnx))
ln(2x-1) +ln3 = 2
x=
x= 1/6(e^2 +3)
e^0 =
1
sketch y=e^x graph
never touches the x axis (unless translated), crosses aat y=1
draw y=e^(x-1) -3
y=0, x=ln3+1
x=0, y=1/e -3
it is y=e^x translated by (1/-3)
inverse of y=e^x
y=lnx
never touches the y axis and crosses the x axis at x=1
draw ln(2x +5)
x=0, y=ln5
y=0, x=-2
y=lnx asymptote
x=0
y=ln(2x-5)ASYMPTOTE
X= -5/2
draw y=e^3x and y=3e^-x on the same graph
y=e^3x is a stretch in x direction s.f (1//3)
y=3e^-x is a stretch in y direction s.f 3 with a y axis reflection
find intersection e^3x=3e^-x
x= 1/4 ln3
f(x)= e^x +1
it’s inverse
f^-1(x) =ln(x-1)
f(x)= ln(3x) -6
it’s inverse
f^-1(x) = 1/3(e^(x+6))
g(x)=2e^(x-5) +3
it’s inverse
its domain and range
g^-1(x) = ln(1/2(x-3)) +5
g’s range: g(x) >3 and domain: x E R
g^-1’s range: g^-1 E R and domain: x>3
e^2x X e^2x =
e^4x