3.3- Organisms exchange substances with their environment Flashcards
Why do small organisms have a good SA:V ratio?
They have a SA that is large enough compared with their volume to allow efficient exchange across their body surface.
What happens to SA:V ratio when organisms get bigger?
Their volume increases at a faster rate than their SA.
So SA:V ratio decreases.
Therefore, simple diffusion at the outer surface is not sufficient for activity levels/ to diffuse to inner layers.
How have organisms evolved to deal with their SA:V ratio changes?
- A flattened shape so no cell is far from the surface increases SA:V ( eg leaf)
- Specialised exchange surfaces with a large SA: increases internal SA:V ratio and maintains a conc gradient for diffusion eg by ventilation- ( eg lungs)
What is metabolic rate?
The amount of energy used up by an organism within a given period of time.
Explain the link between SA:V and metabolic rate.
As SA:V ratio increases in smaller organisms, metabolic rate increases as:
-Rate of heat loss per unit body mass increases so organisms need higher rate of respiration to release enough heat to maintain constant body temp.
How to calculate SA of a cube?
area of one side x number of sides
Work out the SA of a cube with length of one side 5cm?
5x5 = 25cm2
25 x 6 = 150cm2
How to calculate volume of a cube?
length x width x height
Work out the volume of a cube with length of one side 4cm?
l x w x h
4 x 4 x 4 = 64cm3
How to work out SA:V ratio?
SĄ of whole cube/ volume of cube
Work out SA:V ratio of a cube with SA 96 and V 64?
96/64 = 1.5:1
What are the specialised adaptations of exchange surfaces?
Large SA compared to V increasing rate of exchange.
Very thin so diffusion distance is short and materials cross exchange surface faster.
Selectively permeable.
Movement of environmental medium (air) to maintain a diffusion gradient.
Transport system to ensure movement of internal medium (eg blood) to maintain a diffusion gradient.
What is Ficks law regarding diffusion?
Diffusion = surface area x diff in concentration/ length of diffusion path
What are the adaptations of single- called organisms?
Small so have a large SA:V ratio. Oxygen absorbed by diffusion across their body surface, covered only by a cell- surface membrane.
Carbon dioxide from respiration diffuses out.
Cell walls don’t affect diffusion of gases.
Describe 3 sections of the tracheal system of an insect.
1) Spiracles- pores on surface that open/close to allow diffusion
2) Tracheae- large tubes of air that allow diffusion
3) Tracheoles- smaller branches form tracheae, permeable to allow gas exchange within cells.
What are the 3 ways respiratory gases move in and out the tracheal system?
-Along a diffusion gradient
-Mass transport
-By the ends of the tracheoles filling with water.
How is an insect’s tracheal system adapted for gas exchange?
1) Tracheoles have thin walls: short diffusion distance to cells.
2) High number of branched tracheoles so short diffusion distance to cells and large SA.
3) Tracheae provide tubes of air for fast diffusion.
4) Contraction of abdominal muscles changing pressure in body causing air to move in/out.
5) Fluid in end of tracheoles drawn into tissues by osmosis during exercise (lactate produced in anaerobic respiration lowers water potential of cells), diffusion faster through air than liquid.
Is diffusion more rapid in air or water?
Air as the particles in a gas are closer together so vibrate more= more kinetic energy so move faster.
4 key facts about fish?
-Waterproof, airtight external surface.
-Large so have a small SA:V ratio
-Body surface not sufficient to allow respiratory demands
-Internal gas exchange system (gills)
What is the function of gills?
Water enters fish’s mouth and is forced over gills, out through openings on each side.
Gills are the exchange surface for O2 into blood CO2 out of blood.
What is the structure/ adaptations of gills?
Made of many gill filaments covered with many lamellae which stack on top of eachother increasing SA for diffusion.
Thin lamellae wall/ epithelium so short diffusion distance between water and blood.
Lamellae have many capillaries to remove O2 and bring CO2 quickly for concentration gradient.
What is the counter current principle regarding fish?
Blood and water flow in opposite directions.
Blood always passes water with a higher oxygen concentration.
For diffusion along whole length of lamellae.
Why is parallel flow worse for exchange in fish?
A diffusion gradient is only maintained half the distance of the lamellae as equilibrium would not be reached.
50% O2 diffuses into blood as equilibrium wouldn’t be reached.
Why is countercurrent flow better for exchange in fish?
A steep diffusion gradient is maintained all the way across the gill lamellae- almost all O2 diffuses into blood.