3.2-3.3 Vision Flashcards

1
Q

Eyeball Anatomy: Outer Layer (2)

A

<ul> <li>Eyeball Anatomy: Outer Layer (1/6th) (2) <ul> <li>Cornea: Transparent to allow light in</li> <li>Sclera: Outer shell to protect eyes</li> </ul> </li></ul>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Eyeball Anatomy: Inner Layer (5/6th) (2)

A

<ul> <li>Eyeball Anatomy: Inner Layer (5/6th) (2) <ul> <li>Neuronal Layer</li> <li>Macula: On the retina, surrounds the fovea and is responsible for central vision (20/20)</li> </ul> </li></ul>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Factors limiting visual acuity (2)

A

Neural factors: How neurons are connected<br></br>Optical factors: How much can light hit neurons (3)<br></br>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Optical factors: How much can light hit neurons (3)

A

1.Pupil Size<div>2. Clarity of Optical Media</div><div>3. Refractive errors (Leads to blurring)<br></br><br></br></div>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Optical Factor:Pupil Size (1)

A

<ul> <li>Pupil Size (1) <ul> <li>Smaller = More Clear</li> </ul> </li></ul>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Optical Factors: Clarity of Optical Media (2)

A

<ul> <li>Clarity of Optical Media (2) <ul> <li>Cataracts (Len opacity)</li> <li>Corneal Opacity</li> </ul> </li></ul>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Optical Factors: Refractive errors (Leads to blurring) (4)

A

<ul> <li>Refractive errors (Leads to blurring) (4) <ul> <li>Myopia (short sightedness, eyeball is too long and light doesn’t focus on the retina)</li> <li>Hypermetropia (long sightedness, eyeball is too short and light doesn’t focus on the retina)</li> <li>Astigmatism (odd shaped eyeball)</li> <li>Presbyopia</li> </ul> </li></ul>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Basic Properties of Rods: Vision, Types, Colour, Number, Fovea

A

<ul> <li>Basic Properties (6) <ul> <li>Night vision (Scotopic)</li> <li>Very sensitive</li> <li>Only 1 type of rod</li> <li>No colour vision</li> <li>100 million (1Cone:20Rod)</li> <li>Absent from the fovea</li> </ul> </li></ul>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Basic Properties of Cones: Vision, Types, Colour, Number, Fovea

A

<ul> <li><ul><li>Cones<br></br></li></ul></li><li><ul> <li>Basic Properties (5) <ul> <li>Day vision (Photopic)</li> <li>3 types: red, blue and green</li> <li>Allow colour vision</li> <li>5 million (1 Cone: 20Rod)</li> <li>Most dense in the fovea (middle of macula)</li> </ul> </li> </ul> </li></ul>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Why can photoreceptors respond to light (2)

A

<ul> <li>Photoreceptors contain photopigments that are activated by light <ul> <li>In cones, the photopigments are 1 or 3 different coneopsins</li> <li>In rods, the photopigments are rhodospin</li> </ul> </li> <li>Opsins bind to vitamin A (all-trans-retinal), which picks up light signals</li></ul>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

PhototransductionStep 1 (2): Change in Structure

A

“<ul> <li>When light hits photoreceptors, 11-cis retinal becomes all trans retinal</li> <li>This change in conformation causes a change in rhodopsin, and converts a light signal into an electrical signal<br></br><br></br><img></img><br></br></li></ul>”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Phototransduction Step 2 (2): Depolarisation

A

“<ul> <li>Photoreceptors are depolarized in the absence of light and are hyperpolarized by light (Respond via. changes in graded potentials, not APs)</li> <li>Glutamate is the NT used in photoreceptors (Dark: Release NT all the time; Light: Reduce NT)</li></ul><div><img></img><br></br></div>”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

PhototransductionStep 3 (2): Dark vs Light

A

“<ul> <li>In the dark, <ul> <li>cGMP gated Na+ channel has continuous Na+ influx</li> <li>Causes depolarization of the photoreceptor</li> </ul> </li> <li>In the light, <ul> <li>cGMP is broken down into GMP</li> <li>cGMP is no longer present to keep open Na+ channels. Na+ influx ceases and causes hyperpolarisation<br></br><br></br><img></img><br></br></li> </ul> </li></ul>”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

<br></br>TLDR Summary of Phototrasnduction (4)

A

“<ul> <li>Light causes a conformational change in retinal, which in turn causes a conformational change in rhodopsin</li> <li>Rhodopsin activates trasducin</li> <li>Transducin activates phosphodiesterase</li> <li>Phosphodiesterase breaks down cGMP, causing closure of Na+ channels and hyperpolarization</li></ul><div><img></img><br></br></div>”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Retina: General neuralstructure and function (2)

A

“<ul> <li>Retina contains many cell types (Light must pass through from ganglion to photoreceptor)</li> <li>Many vascular and supporting cell types around photoreceptors important for keeping them alive</li></ul><div><img></img><br></br></div>”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Retina: Pathways and Interactions

A

”"”Through”” Pathway (3)<br></br>- Photoreceptors (Rods and Cones)<div>- Bipolar Cells<br></br>- Ganglion Cells</div><div><br></br></div><div>Lateral Interactions</div><div>- Horizontal Cells</div><div>- Amacrine Cells</div>”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Bipolar Cells: Function, Types

A

<ul> <li>Synapses with both photoreceptors and ganglion</li> <li>10 types (1 for rods, 9 for cones)</li> <li>Spatial vision and colour vision</li></ul>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Define Receptive Field? (1)

A

<ul> <li>Area of the retina when stimulated, causes a change in ganglion cell membrane potential</li></ul>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Types? (4) Ganglion cells. What is the shape of the receptive field?

A

<ul> <li>Many types (20 Types) <ul> <li>ON: Switch on when light shines in receptive field</li> <li>OFF: Switch off when light shines in receptive field</li> <li>M: Motion</li> <li>P: Colour</li> </ul> </li> </ul>

<div>Hence, ganglion cells respond to light differently, depending on where light falls in receptive field (CONCENTRIC)</div>

20
Q

Function? (1) Ganglion Cells

A

<ul> <li>Output of retina neurons</li></ul>

21
Q

Action? (1) Ganglion Cells

A

In response to light, they release glutamate and fire APs (Only cell in the retina that does it)

22
Q

“<img></img>What is the red and green”

A

Red: Horizontal Cells (Input and Output: Both photoreceptors)<div><br></br></div><div>Green: Amacrine Cells (Input: Bipolar & Output: Bipolar and Ganglion)</div>

23
Q

Horizontal Cells: Function, Action, Response

A

<ul> <li>Lateral inhibition of the retinal through pathway <ul> <li>Receive input from photoreceptors</li> <li>Output to other photoreceptors</li> </ul> </li> <li>Uses GABA</li> <li>Respond to light by hyperpolarizing</li></ul>

24
Q

Amacrine Cells: Function, Action, Importance

A

<ul> <li>Lateral inhibition of the retinal through pathway</li> <li>Axonless</li> <li>Release inhibitory NTs (GABA and glycine)</li> <li>Important for modulating the synapse between bipolar and ganglion cells <ul> <li>Input: Bipolar</li> <li>Output: Bipolar and Ganglion</li> </ul> </li></ul>

25
Q

Types of Ganglion Cells? (2)

A

M and P cells

26
Q

M Cells? (4): Size, Number, Receptive Field, Function

A

<ul> <li>Large</li> <li>10% of ganglion cells</li> <li>Large receptive field</li> <li>Motion detection, flicker and analysis of gross features</li></ul>

27
Q

P Cells? (4): Size, Number, Function

A

<ul> <li>Small</li> <li>80-90% of ganglion cells</li> <li>Visual acuity and colour vision</li> <li>P ganglion cells respond best when a specific wavelength of light is shone on their receptive field</li></ul>

28
Q

Output Targets? (2) of Ganglion Cells

A

“Many brain regions but majority to LGN<br></br><ul> <li>Axons of ganglion cells form the optic nerve, and project to the lateral geniculate nucleus (LGN) in the thalamus</li> <li>LGN neurons project through the optic radiations to the visual cortex in the occipital lobe</li><li><img></img><br></br></li></ul>”

29
Q

Optic Chiasm (2)

A

“<ul> <li>Fibres from left and right optic nerve form Optic chiasm <ul> <li><strong>Nasal</strong> fibres of the optic nerve (from the nasal side of the retina) <strong>cross</strong> at the optic chiasm</li> <li><strong>Tempora</strong>l fibres of the optic nerve (from the temporal side of the retina) <strong>don’t</strong> <strong>cross</strong> at the optic chiasm</li> </ul> </li> <li>Lies at base of the brain (anterior to the pituitary)</li></ul><div><div><img></img><img></img></div> <div>Left hemisphere: Right visual hemifield (both eyes)</div></div>”

30
Q

LGN:Cells and Layers (3)

A

“<ul> <li>M cells (layers 1 – 2), which receive input from M ganglion cells (1 Layer for each eye)</li> <li>P cells (layers 3 – 6), which receive input from P ganglion cells (2 Layers for each eye)</li> <li>Hence, left and right LGN receive inputs from both eyes (segregated information)</li></ul><div><img></img><br></br></div>”

31
Q

Optic Radiation (3): What is it, location, path

A

“<ul> <li> <div>White matter tract where LGN neurons (M/P) axons project through</div> </li> <li> <div>Temporal and parietal lobes</div> </li> <li> <div>Synapse in V1</div> <div><br></br></div> <div>Optic Radiation = White thick structure</div> </li><li><div><img></img><br></br></div></li></ul>”

32
Q

Alternative name and location (1) V1

A

<ul> <li>Area 17 located in the occipital lobe, surrounding the calcarine fissure</li></ul>

33
Q

Representation of visual field (1)V1

A

Information from each visual hemifield projects to the contralateral visual cortex

34
Q

“Or<span>g</span>anisation? (3) of V1”

A

“Retinotopic organization: Neighbouring cells within the retina project to neighbouring cells in the LGN and thus cortex<br></br><ul> <li>Posterior-most (outer) part of the V1 encodes central vision</li> <li>Anterior-most part of the V1 encodes peripheral vision (inner)<br></br><br></br><img></img><br></br></li></ul>”

35
Q

Layers? (2)V1

A

<ul> <li>6 layers of the visual cortex, but input from the LGN projects to layer 4C <ul> <li>M type GC/LGN cells input to layer 4Cα</li> <li>P type GC/LGN cells input to layer 4Cβ</li> </ul> </li> <li>Inputs are segregated into ocular dominance columns, where inputs from each part of the eye are adjacent and interspersed</li></ul>

36
Q

Functions? (2)V1

A

“Orientation selectivity: Neurons respond best to bars moving in particular orientation<br></br>Orientation columns: Between layers of the cortex, neurons in a particular location will respond the same way to bars of light, and neurons in a different location will respond differently<br></br><br></br><img></img><img></img><br></br>”

37
Q

Mixing of information from each eye (1)V1

A

“Mixing of information from each eyes occurs in layers IVB and Layer III (Inputs to 4Cα M and 4Cβ P are segregated)<br></br><br></br><img></img><br></br>”

38
Q

Defects: Retina/Optic Nerve; Chaism; Far back

A

<ul> <li>Retina/Optic Nerve <ul> <li>Lose ability to see in one eye</li> </ul> </li> <li>Chiasm <ul> <li>Lose left hemifield in left eyes and right hemifield in right eyes</li> </ul> </li> <li>Far Back <ul> <li>Lose vision in same hemifield on both sides</li> </ul> </li></ul>

39
Q

Area MTLocation (1)

A

Middle temporal lobe

40
Q

Function (1)Area MT

A

Processing object motion.

41
Q

Inputs (2) to MT

A

<ul> <li>Receives retinotopic information from V2 and V3</li> <li>Receives input from cells in layer 4B of V1 (i.e. M type cells)</li></ul>

42
Q

Area V4Inputs (1)

A

Receives input from the blob and interblob regions of the V1 (via. V2)

43
Q

Area V4Receptive Fields (1)

A

Large receptive fields that are both orientation and colour selective

44
Q

Function (1)Area V4

A

Perception of shape and colour

45
Q

Area ITInput (1)

A

Output of V4

46
Q

Area ITFunctions (2)

A

“<ul> <li>Neurons respond to abstract shapes and colours</li> <li>Important for visual memory, perception, and faces</li></ul><div><img></img><br></br></div>”

47
Q

What is the optic disc

A

Blind spot (No rods and cons)