3 Atomic Packing Flashcards
For FCC, what are
atoms per unit cell
cube length a
APF
Coordination number?
FCC: 4 atoms per cell a = (2 root 2)R APF = 0.74 Coord = 12
For BCC, what are:
atoms per unit cell
cube length a
APF
Coordination number?
BCC:
2 atoms per unit cell
a = 4R / sqrt(3)
APF = 0.68 = pi * sqrt(3)/8
Coord = 8
For HCP, what are:
atoms per unit cell
c/a ratio
APF
Coordination number?
HCP:
6 atoms per unit cell
c/a of 1.633
APF of 0.74
Coord number of 12
What’s the difference between amorphous and crystalline?
Crystalline structures are ordered, while an amorphous structure is disordered.
Amorphous are isotropic, amorphous are anisotropic
How do you make amorphous metals?
Cool the metal extremely rapidly, to prevent it from solidifying.
Amorphous copper can be made by spewing it out of a spinning wheel
What materials are normally crystalline, and what are normally amorphous?
Simple compounds consisting of one or two elements are typically crystalline.
Complex compounds (or simply constraint on atom positions) tend to be amorphous
What are the two rules to creating a unit cell?
Highest level of geometric symmetry, or fewest number of atoms.
Remember that this unit cell must be tesselateable
What are some examples of HCP?
Ti, Zn, Co
What are the important things to remember about HCP?
c/a = sqrt(8/3) = 1.633
APF = pi / sqrt (18) = 0.74
Three interior atoms are fully within the hexagon.
Both things come from geometric arguments. c/a from two constructed triangles, and APF from 6-sphere volume divided by volume of hexagonal unit cell.
What are the important things to remember about FCC?
There’s 1/8th of an atom on each corner, and half an atom on each face. That is all.
a = 2root(2)*R from pythagoras on cube face.
What are some examples of FCC?
Cu, Al, Ag
What are some examples of BCC?
Fe, Cr, W
What are the important things to remember?
Coord number?
APF?
a?
Coord 8
APF pi root(3/8) = 0.68
a = r/root(3) * r
OTHER CRYSTAL SYSTEMS:
How many dimensions needed to define a parallelepiped?
Six. Three length and three angles.
What are these parallelepipeds called?
Bravais lattices.