2.1 Flashcards
an example that proves that a conjecture or statement is false
counterexample
a statement that is believed to be true
conjecture
a statement that can be written in the form “if p, then q,” is the hypothesis of the statement and q is the conclusion.
conditional statement
a statement formed by exchanging the hypothesis and conclusion of a conditional statement
converse
a statement formed by negating the hypothesis and conclusion of a conditional statement
inverse
a statement formed by both exchanging and negating the hypothesis and conclusion of a conditional statement
Contrapositive
a statement that can be written in the form “p if and only if q” where p is the hypothesis and q is the conclusion.
biconditional statement
biconditional statements can be used to write
definitions
a statement that describes a mathematical object and can be written as a true biconditional statement
Definition