Κεφάλαιο 2 : Αντιγραφή, έκφραση και ρύθμιση της γενετικής πληροφορίας Flashcards

1
Q

Γιατί ο μηχανισμός αυτοδιπλασιασμού του DNA ονομάστηκε ημισυντηρητικός;

A

Η διπλή έλικα του DNA ξετυλίγεται και κάθε αλυσίδα λειτουργεί ως καλούπι για τη σύνθεση μίας νέας αλυσίδας. Ετσι τα δύο θυγατρικά μόρια DNA που προκύπτουν είναι πανομοιότυπα μεταξύ τους και με το μητρικό μόριο και το καθένα αποτελείται από μία παλιά και μία καινούρια αλυσίδα.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Πώς επιτυγχάνεται η εκπληκτική ακρίβεια και μεγάλη ταχύτητα στη διαδικασία της αντιγραφής;

A

Τα κύτταρα διαθέτουν ένα σημαντικο “οπλοστάσιο” εξειδικευμένων ενζύμων και άλλων πρωτεινών που λειτουργούν ταυτόχρονα και καταλύουν τις χημικές αντιδράσεις της αντιγραφής με εκπληκτική ακρίβεια και μεγάλη ταχύτητα.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Για πιό λόγο ο μηχανισμός της αντιγραφής έχει μελετηθεί περισσότερο στα βακτήρια;

A

Ο μηχανισμός της αντιγραφής έχει μελετηθεί περισσότερο στα βακτήρια και ιδιαίτερα στο βακτήριο Escherichia coli γιατί το DNA τους είναι πολύ μικρότερο και απλόυστερα οργανωμένο από αυτό των ευκαριωτικών κυττάρων. Όμως, τα βασικά στάδια του μηχανισμού της αντιγραφής παρουσιάζουν σημαντικές ομοιότητες και στα δύο είδη κυττάρων.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Ποιές ονομάζονται θέσεις έναρξης αντιγραφής του DNA και γιατί το DNA των ευκαριωτικών κυττάρων αντιγράφεται πιο γρήγορα;

A

Η αντιγραφή του DNA αρχίζει από συγκεκριμένα σημεία, τις Θέσεις Έναρξης Αντιγραφής. Το βακτηριακό DNA, που είναι κυκλικό, έχει μόνο μία θέση έναρξης αντιγραφής και αντιγράφεται κάτω από ευνοικές συνθήκες σε λιγότερο από 30 λεπτά. Στα ευκαριωτικά κύτταρα, πριν την αντιγραφή, το DNA κάθε χρωμοσώματος είναι ένα μακρύ γραμμικό μόριο, το οποίο έχει πολυάριθμες θέσεις έναρξης αντιγραφής. Έτσι, το DNA των ευκαριωτικών κυττάρων αντιγράφεται ταυτόχρονα από εκατοντάδες σημεία σε όλο το μήκος του και στη συνέχεια τα τμήματα που δημιουργούνται ενώνονται μεταξύ τους. Με αυτό τον τρόπο το DNA των ανώτερων ευκαριωτικών οργανισμών παρ’οτι είναι περίπου 1000 φορές μεγαλύτερο από αυτό των προκαριωτικών αντιγράφεται πολύ γρήγορα.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Πιο ένζυμο είναι απαραίτητο για να αρχίσει η αντιγραφή του DNA;

A

Για να αρχίσει η αντιγραφή του DNA, είναι απαραίτητο να ξετυλιχθούν στις θέσεις έναρξης της αντιγραφής οι δύο αλυσίδες. Αυτό επιτυγχάνεται με τη βοήθεια ειδικών ενζύμων, που σπάζουν τους δεσμούς υδρογόνου μεταξύ των δύο αλυσίδων. Τα ένζυμα αυτά ονομάζονται DNA ελικάσες. Όταν ανοίξει η διπλή έλικα, δημιουργείται μια «θηλιά», η οποία αυξάνεται και προς τις δύο κατευθύνσεις. Οι θηλιές που δημιουργούνται κατά την έναρξη της αντιγραφής σε ένα μόριο DNA είναι ορατές με το ηλεκτρονικό μικροσκόπιο.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Ποιος αντικαθιστά τη DNA πολυμεράση στην έναρξη της αντιγραφής;

A

Τα κύρια ένζυμα που συμμετέχουν στην αντιγραφή του DNA ονομάζονται DNA πολυμεράσες. Επειδή τα ένζυμα αυτά δεν έχουν την ικανότητα να αρχίσουν την αντιγραφή, το κύτταρο έχει ένα ειδικό σύμπλοκο που αποτελείται από πολλά ένζυμα, το πριμόσωμα, το οποίο συνθέτει στις θέσεις έναρξης της αντιγραφής μικρά τμήματα RNA, συμπληρωματικά προς τις μητρικές αλυσίδες, τα οποία ονομάζονται πρωταρχικά τμήματα

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Ποιες λειτουργίες επιτελούν οι DNA πολυμεράσες κατά την αντιγραφή του DNA;

A

DNA πολυμεράσες επιμηκύνουν τα πρωταρχικά τμήματα, τοποθετώντας συμπληρωματικά δεοξυριβονουκλεοτίδια απέναντι από τις μητρικές αλυσίδες του DNA. Τα νέα μόρια DNA αρχίζουν να σχηματίζονται, καθώς δημιουργούνται δεσμοί υδρογόνου μεταξύ των συμπληρωματικών αζωτούχων βάσεων των δεοξυριβονουκλεοτιδίων. DNA πολυμεράσες επιδιορθώνουν επίσης λάθη που συμβαίνουν κατά τη διάρκεια της αντιγραφής. Μπορούν, δηλαδή, να «βλέπουν» και να απομακρύνουν νουκλεοτίδιο που οι ίδιες τοποθετούν, κατά παράβαση του κανόνα της συμπληρωματικότητας, και να τοποθετούν τα σωστά. Ταυτόχρονα DNA πολυμεράσες απομακρύνουν τα πρωταρχικά τμήματα RNA και τα αντικαθιστούν με τμήματα DNA.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Πως κατασκευάζουν οι DNA πολυμεράσες τις νεοσυντιθέμενες αλυσίδες;

A

Οι DNA πολυμεράσες λειτουργούν μόνο προς καθορισμένη κατεύθυνση και τοποθετούν τα νουκλεοτίδια στο ελεύθερο 3’ άκρο της δεοξυριβόζης του τελευταίου νουκλεοτιδίου κάθε αναπτυσσόμενης αλυσίδας. Έτσι, λέμε ότι αντιγραφή γίνεται με προσανατολισμό 5’ προς 3’. Κάθε νεοσυντιθέμενη αλυσίδα θα έχει προσανατολισμό 5’→3’. Έτσι, σε κάθε διπλή έλικα που παράγεται οι δύο αλυσίδες θα είναι αντιπαράλληλες. Για να ακολουθηθεί αυτός ο κανόνας σε κάθε τμήμα DNA που γίνεται η αντιγραφή, η σύνθεση του DNA είναι συνεχής στη μια αλυσίδα και ασυνεχής στην άλλη.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Ποιος ο ρόλος της DNA δεσμάσης;

A

Τα κομμάτια της ασυνεχούς αλυσίδας συνδέονται μεταξύ τους με τη βοήθεια ενός ενζύμου, που ονομάζεται DNA δεσμάση. Το ίδιο ένζυμο συνδέει και όλα τα κομμάτια που προκύπτουν από τις διάφορες θέσεις έναρξης αντιγραφής.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Ονομαστικά τα ένζυμα που παίρνουν μέρος στην επιδιόρθωση του DNA:

A

DNA πολυμεράσες

Επιδιορθωτικά ένζυμα

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Ποιος ο ρόλος του DNA ενός οργανισμού;

A

To DNA ενός οργανισμού είναι ο μοριακός «σκληρός δίσκος» που περιέχει αποθηκευμένες ακριβείς οδηγίες, οι οποίες καθορίζουν τη δομή και τη λειτουργία του οργανισμού. Ταυτόχρονα περιέχει την πληροφορία για τον αυτοδιπλασιασμό του, εξασφαλίζοντας έτσι τη μεταβίβαση των γενετικών οδηγιών από ένα κύτταρο στα θυγατρικά του και από έναν οργανισμό στους απογόνους του.
Το πρώτο βήμα για την έκφραση της πληροφορίας που υπάρχει στο DNA είναι η μεταφορά της στο RNA με τη διαδικασία της μεταγραφής. To RNA μεταφέρει με τη σειρά του, μέσω της διαδικασίας της μετάφρασης, την πληροφορία στις πρωτεΐνες που είναι υπεύθυνες για τη δομή και λειτουργία των κυττάρων και κατ’ επέκταση και των οργανισμών.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Να δείξετε σχηματικά το ΚΔΜΒ όπως ισχύει σήμερα:

A

↻DNA ⇄ ↻RNA ⇾ πρωτείνες

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Ποιος ο ρόλος της αντιγραφής, της μεταγραφής και της μετάφρασης;

A

Συνοψίζοντας, λοιπόν, διαπιστώνουμε ότι η αντιγραφή του DNA διαιωνίζει τη γενετική πληροφορία, ενώ η μετάφραση χρησιμοποιεί αυτή την πληροφορία, για να κατασκευάσει ένα πολυπεπτίδιο. Η μεταγραφή καθορίζει ποια γονίδια θα εκφραστούν, σε ποιους ιστούς (στους πολυκύτταρους ευκαρυωτικούς οργανισμούς), και σε ποια στάδια της ανάπτυξης.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Σε ποιες κατηγορίες διακρίνονται τα γονίδια με βάση το προιόν που παράγουν;

A

Όλα τα κύτταρα ενός πολυκύτταρου οργανισμού έχουν το ίδιο DNA. Σε κάθε ομάδα κυττάρων όμως εκφράζονται διαφορετικά γονίδια. Στα πρόδρομα ερυθροκύτταρα, για παράδειγμα, εκφράζονται κυρίως τα γονίδια των αιμοσφαιρινών, ενώ στα Β-λεμφοκύτταρα τα γονίδια των αντισωμάτων. Τα γονίδια διακρίνονται σε δύο κατηγορίες:

•Στα γονίδια που μεταγράφονται σε mRNA και μεταφράζονται στη συνέχεια σε πρωτεΐνες και
•Στα γονίδια που μεταγράφονται και παράγουν tRNA, rRNA, και snRNA.
Το απλοειδές ανθρώπινο γονιδίωμα έχει μήκος 3x109 ζεύγη βάσεων. Από αυτό, μικρό ποσοστό μεταγράφεται σε RNA, δηλαδή αποτελεί τα γονίδια.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Πόσα είδη RNA υπάρχουν σε ένα προκαρυωτικό και σε ένα ευκαρυωτικό κύτταρο; Ποιος ο ρόλος του καθενός από αυτά;

A

Υπάρχουν τέσσερα είδη μορίων RNA που παράγονται με τη μεταγραφή:
•το αγγελιαφόρο RNA (mRNA),
•το μεταφορικό RNA (tRNA),
•το ριβοσωμικό RNA (rRNA) και
•το μικρό πυρηνικό RNA (snRNA).
Τα τρία πρώτα είδη υπάρχουν και στους προκαρυωτικούς και στους ευκαρυωτικούς οργανισμούς, αλλά το τέταρτο υπάρχει μόνο στους ευκαρυωτικούς.

  • Αγγελιαφόρο RNA (mRNA). Τα μόρια αυτά μεταφέρουν την πληροφορία του DNA για την παραγωγή μιας πολυπεπτιδικής αλυσίδας.
  • Ριβοσωμικό RNA (rRNA). Τα μόρια αυτά συνδέονται με πρωτεΐνες και σχηματίζουν το ριβόσωμα, ένα «σωματίδιο» απαραίτητο για την πραγματοποίηση της πρωτεϊνοσύνθεσης.
  • Μεταφορικό RNA (tRNA). Κάθε μεταφορικό RNA συνδέεται με ένα συγκεκριμένο αμινοξύ και το μεταφέρει στη θέση της πρωτεϊνοσύνθεσης.
  • Μικρό πυρηνικό RNA (snRNA). Είναι μικρά μόρια RNA, τα οποία συνδέονται με πρωτεΐνες και σχηματίζουν μικρά ριβονουκλεοπρωτείνικά σωματίδια. Τα σωματίδια αυτά καταλύουν την «ωρίμανση» του mRNA, μια διαδικασία που, όπως θα αναφερθεί παρακάτω, γίνεται μόνο στους ευκαρυωτικούς οργανισμούς.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Πια ονομάζονται ρυθμιστικά στοιχεία της μεταγραφής. Να εξηγήσετε τον ρόλο τους στη μεταγραφή των γονιδίων στα ευκαρυωτικά κύτταρα:

A

Ο μηχανισμός της μεταγραφής είναι ο ίδιος στους προκαρυωτικούς και ευκαρυωτικούς οργανισμούς. Η μεταγραφή καταλύεται από ένα ένζυμο, την RNA πολυμεράση (στους ευκαρυωτικούς οργανισμούς υπάρχουν τρία είδη RNA πολυμερασών).
Η RNA πολυμεράση προσδένεται σε ειδικές περιοχές του DNA, που ονομάζονται υποκινητές, με τη βοήθεια πρωτεϊνών που ονομάζονται μεταγραφικοί παράγοντες. Οι υποκινητές και οι μεταγραφικοί παράγοντες αποτελούν τα ρυθμιστικά στοιχεία της μεταγραφής του DNA και επιτρέπουν στην RNA πολυμεράση να αρχίσει σωστά τη μεταγραφή. Οι υποκινητές βρίσκονται πάντοτε πριν από την αρχή κάθε γονιδίου.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Ποια η διαδικασία της μεταγραφής;

A

1) Κατά την έναρξη της μεταγραφής ενός γονιδίου η RNA πολυμεράση προσδένεται στον υποκινητή και προκαλεί τοπικό ξετύλιγμα της διπλής έλικας του DNA.
2) Στη συνέχεια, τοποθετεί τα ριβονουκλεοτίδια απέναντι από τα δεοξυριβονουκλεοτίδια μίας αλυσίδας του DNA σύμφωνα με τον κανόνα της συμπληρωματικότητας των βάσεων, όπως και στην αντιγραφή, με τη διαφορά ότι εδώ απέναντι από την αδενίνη τοποθετείται το ριβονουκλεοτίδιο που περιέχει ουρακίλη.
3) Η RNA πολυμεράση συνδέει τα ριβονουκλεοτίδια που προστίθενται το ένα μετά το άλλο, με 3’-5’φωσφοδιεστερικό δεσμό. Η μεταγραφή έχει προσανατολισμό 5’→3’ όπως και η αντιγραφή.
4) Η σύνθεση του RNA σταματά στο τέλος του γονιδίου, όπου ειδικές αλληλουχίες οι οποίες ονομάζονται αλληλουχίες ληξης της μεταγραφής, επιτρέπουν την απελευθέρωσή του.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Τι συμβαίνει στους προκαρυωτικούς οργανισμούς μετά την μεταγραφή;

A

Στους προκαρυωτικούς οργανισμούς το mRNA αρχίζει να μεταφράζεται σε πρωτεΐνη πριν ακόμη ολοκληρωθεί η μεταγραφή του. Αυτό είναι δυνατό, επειδή δεν υπάρχει πυρηνική μεμβράνη.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Ποια ειναι η μεταγραφόμενη αλυσίδα;

A

Η μη κωδικη (συμπληρωματική με το RNA)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Ποια γονίδια ονομάζονται ασυνεχή και που τα συναντάμε;

A

Αντίθετα, στους ευκαρυωτικούς οργανισμούς, το mRNA που παράγεται κατά τη μεταγραφή ενός γονιδίου συνήθως δεν είναι έτοιμο να μεταφραστεί, αλλά υφίσταται μια πολύπλοκη διαδικασία ωρίμανσης. Η διαδικασία αυτή αποτελεί ένα από τα πιο ενδιαφέροντα ευρήματα της Μοριακής Βιολογίας, γιατί οδήγησε στο συμπέρασμα ότι τα περισσότερα γονίδια των ευκαρυωτικών οργανισμών (και των ιών που τους προσβάλλουν) είναι ασυνεχή ή διακεκομμένα. Δηλαδή, η αλληλουχία που μεταφράζεται σε αμινοξέα διακόπτεται από ενδιάμεσες αλληλουχίες οι οποίες δε μεταφράζονται σε αμινοξέα.

21
Q

Εσώνια - Εξώνια:

A

Οι αλληλουχίες που μεταφράζονται σε αμινοξέα ονομάζονται εξώνια και οι ενδιάμεσες αλληλουχίες ονομάζονται εσώνια.

22
Q

Που συμβαίνει η ωρίμανση και ποιοί παράγοντες συμμετέχουν στη διαδικασία αυτή;

A

Όταν ένα γονίδιο που περιέχει εσώνια μεταγράφεται, δημιουργείται το πρόδρομο mRNA που περιέχει και εξώνια και εσώνια. Το πρόδρομο mRNA μετατρέπεται σε mRNA με τη διαδικασία της ωρίμανσης, κατά την οποία τα εσώνια κόβονται από μικρά ριβονουκλεοπρωτεϊνικά «σωματίδια» και απομακρύνονται. Τα ριβονουκλεοπρωτεϊνικά σωματίδια αποτελούνται από snRNA και από πρωτεΐνες και λειτουργούν ως ένζυμα: κόβουν τα εσώνια και συρράπτουν τα εξώνια μεταξύ τους. Έτσι σχηματίζεται το «ώριμο» mRNA.

23
Q

Από ποιες περιοχές αποτελείται ένα ώριμο mRNA;

A

Παρ’ ότι αποτελείται αποκλειστικά από εξώνια, έχει δύο περιοχές που δε μεταφράζονται σε αμινοξέα. Η μία βρίσκεται στο 5’ άκρο και η άλλη στο 3’ άκρο. Οι αλληλουχίες αυτές ονομάζονται 5’ και 3’ αμετάφραστες περιοχές, αντίστοιχα. To mRNA μεταφέρεται από τον πυρήνα στο κυπαρόπλασμα και ειδικότερα στα ριβοσώματα όπου είναι η θέση της πρωτεϊνοσύνθεσης.

24
Q

Ορισμός γενετικού κώδικα:

A

Η αλληλουχία των βάσεων του mRNA καθορίζει την αλληλουχία των αμινοξέων στις πρωτεΐνες με βάση έναν κώδικα αντιστοίχισης νουκλεοτιδίων mRNA με αμινοξέα πρωτεϊνών, ο οποίος ονομάζεται γενετικός κώδικας.

25
Q

Πως ανακαλύφθηκε ότι ο γενετικός κώδικας είναι κώδικας τριπλέτας;

A

Επειδή ο αριθμός των διαφορετικών αμινοξέων που συγκροτούν τις πρωτεΐνες είναι είκοσι και, αντίστοιχα, ο αριθμός των διαφορετικών νουκλεοτιδίων που συγκροτούν το RNA είναι τέσσερα, θεωρήθηκε πιθανό ότι τρία νουκλεοτίδια αντιστοιχούν σε ένα αμινοξύ και γι’ αυτό ο γενετικός κώδικας ονομάστηκε κώδικας τριπλέτας. Ο κώδικας τριπλέτας είναι φυσική συνέπεια του γεγονότος ότι τέσσερα νουκλεοτίδια, αν συνδυαστούν ανά ένα (41 =4) ή ανά δύο (42 = 16), δε δίνουν αρκετούς συνδυασμούς για να κωδικοποιηθούν τα είκοσι αμινοξέα. Αν όμως συνδυαστούν ανά τρία (43=64) οι συνδυασμοί είναι παραπάνω από αρκετοί.

26
Q

Βασικά χαρακτηριστικά του γενετικού κώδικα:

A

Τα βασικά χαρακτηριστικά του γενετικού κώδικα είναι:

⦿ Ο γενετικός κώδικας είναι κώδικας τριπλέτας, δηλαδή μια τριάδα νουκλεοτιδίων, το κωδικόνιο, κωδικοποιεί ένα αμινοξύ.
⦿ Ο γενετικός κώδικας είναι συνεχής, δηλαδή το mRNA διαβάζεται συνεχώς ανά τρία νουκλεοτίδια χωρίς να παραλείπεται κάποιο νουκλεοτίδιο.
⦿ Ο γενετικός κώδικας είναι μη επικαλυπτόμενος, δηλαδή κάθε νουκλεοτίδιο ανήκει σε ένα μόνο κωδικόνιο.
⦿ Ο γενετικός κώδικας είναι σχεδόν καθολικός. Όλοι οι οργανισμοί έχουν τον ίδιο γενετικό κώδικα. Αυτό πρακτικά σημαίνει ότι το mRNA από οποιονδήποτε οργανισμό μπορεί να μεταφραστεί σε εκχυλίσματα φυτικών, ζωικών ή βακτηριακών κυττάρων in vitro και να παραγάγει την ίδια πρωτεΐνη.
⦿ Ο γενετικός κώδικας χαρακτηρίζεται ως εκφυλισμένος. Με εξαίρεση δύο αμινοξέα (μεθειονίνη και τρυπτοφάνη) τα υπόλοιπα 18 κωδικοποιούνται από δύο μέχρι και έξι διαφορετικά κωδικόνια. Τα κωδικόνια που κωδικοποιούν το ίδιο αμινοξύ ονομάζονται συνώνυμα.
⦿ Ο γενετικός κώδικας έχει κωδικόνιο έναρξης και κωδικόνια λήξης. Το κωδικόνιο έναρξης σε όλους τους οργανισμούς είναι το AUG και κωδικοποιεί το αμινοξύ μεθειονίνη. Υπάρχουν τρία κωδικόνια λήξης, τα UAG, UGA και UAA. Η παρουσία των κωδικονίων αυτών στο μόριο του mRNA οδηγεί στον τερματισμό της σύνθεσης της πολυπεπτιδικής αλυσίδας.

27
Q

Που γίνεται η μετάφραση και τι χρειαζεται για να γίνει;

A

Η μετάφραση του mRNA, δηλαδή η αντιστοίχιση των κωδικονίων σε αμινοξέα και η διαδοχική σύνδεση των αμινοξέων σε πολυπεπτιδική αλυσίδα, πραγματοποιείται στα ριβοσώματα με τη βοήθεια των tRNA και τη συμμετοχή αρκετών πρωτεϊνών και ενέργειας. Τα ριβοσώματα μπορούν να χρησιμοποιηθούν ως θέση μετάφρασης για οποιοδήποτε mRNA. Αυτό εξηγεί γιατί τα βακτήρια μπορούν να χρησιμοποιηθούν σαν «εργοστάσια παραγωγής ανθρώπινων πρωτεϊνών».

28
Q

Ποια η δομη του ριβοσώματος;

A

Κάθε ριβόσωμα αποτελείται από δύο υπομονάδες, μια μικρή και μια μεγάλη, και έχει μία θέση πρόσδεσης του mRNA στη μικρή υπομονάδα και δύο θέσεις εισδοχής των tRNA στη μεγάλη υπομονάδα.

29
Q

Να περιγράψετε τη δομή του t-RNA:

A

Κάθε μόριο tRNA έχει μια ειδική τριπλετα νουκλεοτιδίων, το αντικωδικόνιο, με την οποία προσδένεται, λόγω συμπληρωματικότητας, με το αντίστοιχο κωδικόνιο του mRNA. Επιπλέον, κάθε μόριο tRNA διαθέτει μια ειδική θέση σύνδεσης με ένα συγκεκριμένο αμινοξύ.

30
Q

Τι συμβαίνει κατα την έναρξη της μετάφρασης;

A

Κατά την έναρξη της μετάφρασης το mRNA προσδένεται, μέσω μιας αλληλουχίας που υπάρχει στην 5’ αμετάφραση περιοχή του, με το ριβοσωμικό RNA της μικρής υπομονάδας του ριβοσώματος, σύμφωνα με τους κανόνες της συμπληρωματικότητας των βάσεων. Το πρώτο κωδικόνιο του mRNA είναι πάντοτε AUG και σ’ αυτό προσδένεται το tRNA που φέρει το αμινοξύ μεθειονίνη. Όμως δεν έχουν όλες οι πρωτεΐνες του οργανισμού ως πρώτο αμινοξύ μεθειονίνη. Αυτό συμβαίνει γιατί, σε πολλές πρωτεΐνες, μετά τη σύνθεσή τους απομακρύνονται ορισμένα αμινοξέα από το αρχικό αμινικό άκρο τους. Το σύμπλοκο που δημιουργείται μετά την πρόσδεση του mRNA στη μικρή υπομονάδα του ριβοσώματος και του tRNA που μεταφέρει τη μεθειονίνη ονομάζεται σύμπλοκο έναρξης της πρωτεϊνοσύνθεσης. Στη συνέχεια η μεγάλη υπομονάδα του ριβοσώματος συνδέεται με τη μικρή.

31
Q

Ειναι η μεθειονίνη το πρώτο αμινοξυ των πρωτεινών;

A

Το πρώτο κωδικόνιο του mRNA είναι πάντοτε AUG και σ’ αυτό προσδένεται το tRNA που φέρει το αμινοξύ μεθειονίνη. Όμως δεν έχουν όλες οι πρωτεΐνες του οργανισμού ως πρώτο αμινοξύ μεθειονίνη. Αυτό συμβαίνει γιατί, σε πολλές πρωτεΐνες, μετά τη σύνθεσή τους απομακρύνονται ορισμένα αμινοξέα από το αρχικό αμινικό άκρο τους.

32
Q

Τι ειναι το συμπλοκο έναρξης πρωτεινοσυνθεσης και ποια η μετεπειτα πορια του t-RNA που συμμετεχει στο συμπλοκο αυτο;

A

Το σύμπλοκο που δημιουργείται μετά την πρόσδεση του mRNA στη μικρή υπομονάδα του ριβοσώματος και του tRNA που μεταφέρει τη μεθειονίνη ονομάζεται σύμπλοκο έναρξης της πρωτεϊνοσύνθεσης. Στη συνέχεια η μεγάλη υπομονάδα του ριβοσώματος συνδέεται με τη μικρή.Μεταξύ της μεθειονίνης και του δεύτερου αμινοξέος σχηματίζεται πεπτιδικός δεσμός και αμέσως μετά, το πρώτο tRNA αποσυνδέεται από το ριβόσωμα και απελευθερώνεται στο κυτταρόπλασμα όπου συνδέεται πάλι με μεθειονίνη, έτοιμο για επόμενη χρήση.

33
Q

Πως εισερχεται το δευτερο αμινοξυ στο ριβόσωμα;

A

Κατά την επιμήκυνση ένα δεύτερο μόριο tRNA με αντικωδικόνιο συμπληρωματικό του δεύτερου κωδικονίου του mRNA τοποθετείται στην κατάλληλη εισδοχή του ριβοσώματος, μεταφέροντας το δεύτερο αμινοξύ.

34
Q

Ποια η πορία του ριβοσώματος κατα μηκος του mRNA;

A

Στη συνέχεια το ριβόσωμα κινείται κατά μήκος του mRNA κατά ένα κωδικόνιο. Ένα τρίτο tRNA έρχεται να προσδεθεί μεταφέροντας το αμινοξύ του. Ανάμεσα στο δεύτερο και στο τρίτο αμινοξύ σχηματίζεται πεπτιδικός δεσμός. Η πολυπεπτιδική αλυσίδα συνεχίζει να αναπτύσσεται καθώς νέα tRNA μεταφέρουν αμινοξέα τα οποία συνδέονται μεταξύ τους.

35
Q

Πως σταματά η πρωτεινοσύνθεση;

A

Η επιμήκυνση σταματά σε ένα κωδικόνιο λήξης (UGA, UAG ή UAA), επειδή δεν υπάρχουν tRNA που να αντιστοιχούν σε αυτά. Το τελευταίο tRNA απομακρύνεται από το ριβόσωμα και η πολυπεπτιδική αλυσίδα απελευθερώνεται

36
Q

Γιατί η πρωτεινοσυνθεση χαρακτηρίζεται ως οικονομική διαδικασία;

A

Σημειώνεται ότι πολλά μόρια mRNA μπορούν να μεταγράφονται από ένα μόνο γονίδιο. Πολλά ριβοσώματα μπορούν να μεταφράζουν ταυτόχρονα ένα mRNA, το καθένα σε διαφορετικό σημείο κατά μήκος του μορίου. Αμέσως μόλις το ριβόσωμα έχει μεταφράσει τα πρώτα κωδικόνια, η θέση έναρξης του mRNA είναι ελεύθερη για την πρόσδεση ενός άλλου ριβοσώματος. Το σύμπλεγμα των ριβοσωμάτων με mRNA ονομάζεται πολύσωμα. Έτσι, η πρωτεϊνοσύνθεση είναι μια «οικονομική διαδικασία». Ένα κύτταρο μπορεί να παραγάγει μεγάλα ποσά μιας πρωτείνης από ένα ή από δύο αντίγραφα ενός γονιδίου.

37
Q

Γιατί είναι απαραίτητο το πρόγραμμα της γονιδιακής ρύθμισης;

A

Σε κάθε κύτταρο δεν παράγονται όλες οι πρωτεΐνες σε κάθε χρονική στιγμή. Επιπλέον, επειδή το κύτταρο χρειάζεται κάθε πρωτεΐνη σε συγκεκριμένη ποσότητα, οι πρωτεΐνες ενός κυττάρου δεν παράγονται σε ίσες ποσότητες. Αν λοιπόν όλα τα γονίδια δούλευαν με τον ίδιο ρυθμό, ορισμένες πρωτεΐνες θα παράγονταν σε μεγάλες ποσότητες και άλλες σε ποσότητες που δε θα επαρκούσαν. Έτσι, είναι απαραίτητη η ύπαρξη και η λειτουργία ενός προγράμματος ρύθμισης της γονίδιακής έκφρασης, που παρέχει τις οδηγίες για το είδος και την ποσότητα των πρωτεϊνών οι οποίες πρέπει να παραχθούν σε κάθε συγκεκριμένη χρονική στιγμή.

38
Q

Ορισμός γονιδιακής έκφρασης

A

Ο όρος γονιδιακή έκφραση αναφέρεται συνήθως σε όλη τη διαδικασία με την οποία ένα γονίδιο ενεργοποιείται, για να παραγάγει μια πρωτεΐνη.

39
Q

Που αποσκοπεί η ρύθμιση της γονιδιακής έκφρασης στα βακτήρια (ερώτηση πανελλαδικών)

A

Στα βακτήρια η ρύθμιση της γονιδιακής έκφρασης αποσκοπεί κυρίως στην προσαρμογή του οργανισμού στις εναλλαγές του περιβάλλοντος, έτσι ώστε να εξασφαλίζονται οι καλύτερες συνθήκες για τη βασική λειτουργία του που είναι η αύξηση και η διαίρεση.

40
Q

Πόσα γονίδια έχει η E.coli; Μεταγράφονται και μεταφράζονται όλα;

A

Ένα βακτηριακό κύτταρο Ε. coli έχει περισσότερα από 4000 γονίδια. Μερικά γονίδια μεταγράφονται συνεχώς και κωδικοποιούν πρωτεΐνες, που χρειάζονται για τις βασικές λειτουργίες του κυττάρου. Άλλα γονίδια μεταγράφονται μόνο όταν το κύτταρο αναπτύσσεται σε ειδικές περιβαλλοντικές συνθήκες, επειδή τα προϊόντα των γονιδίων αυτών είναι απαραίτητα για την επιβίωση του κυττάρου στις συνθήκες αυτές.

41
Q

Τι περιέχει το θρεπτικό υλικό της E.coli;

A

Τα βακτήρια Ε. coli χρησιμοποιούν ως πηγή άνθρακα το σάκχαρο γλυκόζη. Γεννιέται λοιπόν το ερώτημα: αν στο περιβάλλον αντί για γλυκόζη υπάρχει ο δισακχαρίτης λακτόζη, το βακτήριο έχει τη δυνατότητα να τον διασπάσει για να επιβιώσει ή θα πεθάνει, μολονότι γύρω του υπάρχει άφθονη τροφή; Το βακτήριο λύνει το πρόβλημα αυτό ρυθμίζοντας την παραγωγή των κατάλληλων ενζύμων, που θα διασπάσουν πι λακτόζη σε γλυκόζη και γαλακτόζη.

42
Q

Από ποιους επιστήμονες έγιναν οι αρχικές μελέτες της ρύθμισης των γονιδίων στα βακτήρια;

A

Οι μηχανισμοί με τους οποίους ένα κύτταρο «ξυπνά» ένα «κοιμισμένο» γονίδιο είναι οι πιο σημαντικοί και πολύπλοκοι της Μοριακής Βιολογίας. Οι αρχικές μελέτες της ρύθμισης των γονιδίων έγιναν από τους Jacob και Monod, το 1961. Οι ερευνητές περιέγραψαν την ικανότητα του βακτηρίου Ε. coli να παραγάγει τα τρία απαραίτητα ένζυμα που χρειάζεται για να μεταβολίσει το δισακχαρίτη λακτόζη, όταν δεν υπάρχει γλυκόζη στην τροφή του. Οι Jacob και Monod απέδειξαν με γενετικές μελέτες ότι τα γονίδια που κωδικοποιούν τα τρία αυτά ένζυμα βρίσκονται το ένα δίπλα στο άλλο πάνω στο γονιδίωμα του βακτηρίου και αποτελούν μια μονάδα, που την ονόμασαν οπερόνιο της λακτόζης.

43
Q

Από ποιες περιοχές αποτελείται το οπερόνιο της λακτόζης;

A

Στο οπερόνιο της λακτόζης περιλαμβάνονται εκτός από αυτά τα γονίδια, που ονομάζονται δομικά, και αλληλουχίες DNA που ρυθμίζουν τη μεταγραφή τους. Οι αλληλουχίες αυτές που βρίσκονται μπροστά από τα δομικά γονίδια είναι κατά σειρά ένα ρυθμιστικό γονίδιο, ο υποκινητής και ο χειριστής.

44
Q

Πως επιτυγχάνεται η καταστολή του οπερονίου της λακτόζης (ερώτηση πανελλαδικών)

A

Το οπερόνιο της λακτόζης δε μεταγράφεται ούτε μεταφράζεται, όταν απουσιάζει από το θρεπτικό υλικό η λακτόζη. Τότε λέμε ότι τα γονίδια που το αποτελούν βρίσκονται υπό καταστολή. Πώς επιτυγχάνεται η καταστολή; Δύο είναι τα ρυθμιστικά μόρια: μια αλληλουχία DNA, που ονομάζεται χειριστής και βρίσκεται μεταξύ του υποκινητή και του πρώτου γονιδίου, και μια ρυθμιστική πρωτεΐνη-καταστολέας. Όταν απουσιάζει η λακτόζη ο καταστολέας προσδένεται ισχυρά στο χειριστή και εμποδίζει την RNA πολυμεράση να αρχίσει τη μεταγραφή των γονιδίων του οπερονίου. (Εικόνα 2.13α). Ο καταστολέας κωδικοποιείται από ένα ρυθμιστικό γονίδιο, που βρίσκεται μπροστά από τον υποκινητή. Το ρυθμιστικό γονίδιο μεταγράφεται συνεχώς και παράγει λίγα μόρια του καταστολέα. Τα μόρια αυτά προσδένονται συνεχώς στο χειριστή.

45
Q

Για ποιον λόγο τα κύτταρα ενός πολυκύτταρου οργανισμού παρόλο που έχουν όλα το ίδιο γενετικό υλικό διαφέρουν ως προς τη μορφή και τη λειτουργία τους;

A

Μολονότι όλα τα κύτταρα έχουν τις ίδιες γενετικές οδηγίες, έχουν αναπτύξει μηχανισμούς που τους επιτρέπουν να εκφράζουν τη γενετική τους πληροφορία επιλεκτικά και να ακολουθούν μόνο τις οδηγίες που χρειάζονται κάθε χρονική στιγμή. Κάθε κυτταρικός τύπος έχει εξειδικευμένη λειτουργία και πρέπει να υπάρχει πλήρης συντονισμός των λειτουργιών όλων των κυττάρων. Γι’ αυτό, η τελειοποίηση των συστημάτων ελέγχου είναι αναγκαία και λόγω της μεγαλύτερης πολυπλοκότητας των ευκαρυωτικών κυττάρων, αλλά και επειδή πρέπει να ελεγχθεί προσεκτικά η ανάπτυξη των πολυκύτταρων οργανισμών. Κατά συνέπεια, η ρύθμιση των γονιδίων στα ευκαρυωτικά κύτταρα γίνεται σε πολλά επίπεδα.

46
Q

Ορισμός κυτταρικής διαφοροποίησης:

A

Τα κύτταρα ενός πολυκύτταρου οργανισμού, σε αντίθεση με τα κύτταρα που ανήκουν σε ένα βακτηριακό στέλεχος και είναι πανομοιότυπα μεταξύ τους, διαφέρουν στη δομή και στη λειτουργία τους. Η ζωή αρχίζει, όταν ένα γονιμοποιημένο ωάριο διαιρείται με μίτωση και παράγει τρισεκατομμύρια κύτταρα, που έχουν τα ίδια γονίδια. Στα αρχικά στάδια της εμβρυογένεσης τα κύτταρα εξειδικεύονται, για να εκτελέσουν επιμέρους λειτουργίες και η διαδικασία αυτή ονομάζεται κυτταρική διαφοροποίηση.

47
Q

Να αναφέρετε πως επιβιώνουν ορισμένα βακτήρια απουσία αμινοξέων από το θρεπτικό τους υλικό (πανελελε)

A

Στο γονιδίωμα των προκαρυωτικών οργανισμών τα γονίδια των ενζύμων που παίρνουν μέρος σε μια μεταβολική οδό, όπως η διάσπαση της λακτόζης ή η βιοσύνθεση διάφορων αμινοξέων, οργανώνονται σε οπερόνια, δηλαδή σε ομάδες που υπόκεινται σε κοινό έλεγχο της έκφρασής τους.

48
Q

Να περιγράψετε τι συμβαίνει στο οπερόνιο της λακτόζης όταν η Ε.coli αναπτύσσεται σε θρεπτικό υλικό που υπάρχει λακτόζη.

A

Όταν στο θρεπτικό υλικό υπάρχει μόνο λακτόζη, τότε ο ίδιος ο δισακχαρίτης προσδένεται στον καταστολέα και δεν του επιτρέπει να προσδεθεί στο χειριστή. Τότε η RNA πολυμεράση είναι ελεύθερη να αρχίσει τη μεταγραφή. Δηλαδή η λακτόζη λειτουργεί ως επαγωγέας της μεταγραφής των γονιδίων του οπερονίου. Τότε τα γονίδια αρχίζουν να «εκφράζονται», δηλαδή να μεταγράφονται και να συνθέτουν τα ένζυμα. Τα τρία ένζυμα μεταφράζονται ταυτόχρονα από το ίδιο μόριο mRNA το οποίο περιέχει κωδικόνιο έναρξης και λήξης για κάθε ένζυμο. Συμπερασματικά, η ίδια η λακτόζη ενεργοποιεί τη διαδικασία για την αποικοδόμησή της. Όταν η λακτόζη διασπαστεί πλήρως, τότε η πρωτείνη καταστολέας είναι ελεύθερη να προσδεθεί στο χειριστή και να καταστείλει τη λειτουργία των τριών γονιδίων.

49
Q

Πως οι μεταγραφικοί παράγοντες συμμετέχουν στη ρύθμιση των ευκαρυωτικών οργανισμών;

A

Μόνο που στους ευκαρυωτικούς οργανισμούς οι μεταγραφικοί παράγοντες παρουσιάζουν τεράστια ποικιλία. Κάθε κυτταρικός τύπος περιέχει διαφορετικά είδη μεταγραφικών παραγόντων. Διαφορετικός συνδυασμός μεταγραφικών παραγόντων ρυθμίζει τη μεταγραφή κάθε γονιδίου. Μόνο όταν ο σωστός συνδυασμός των μεταγραφικών παραγόντων προσδεθεί στον υποκινητή ενός γονιδίου, αρχίζει η RNA πολυμεράση τη μεταγραφή ενός γονιδίου.