Week 5 L9 211 Flashcards
Anatomy of the Ear
Sound is funneled through the pinna (the external ear)
Sounds coming down the ear canal cause the tympanic membrane (the eardrum) to vibrate. These vibrations are transferred to the middle ear
The middle ear comprises three ossicles (small bones of the middle ear: the malleus, incus and stapes
The cochlea is part of the inner ear. It is a long coiled tube structure containing fluid. It also contains the receptors.
Ear does not mix soundewaves, Auditiry system does.
The Stimulus for addition
§ Sounds are vibrations of air molecules that are produced by objects.
§ If the vibration ranges between 30 and 20,000 times per second, it
stimulates receptor cells in the ears
Sound has three physical dimensions:
- The pitch determines the frequency
of the molecular vibrations. It is measured in hertz (Hz) or cycles per second.
- The loudness corresponds to the amplitude or intensity of the molecular vibrations.
Cross Section Through Cochlea
The cochlea is divided into three longtudinal divisions: scala vesibuli, scala media and scala tympani
The receptive organ is the organ of Corti. It consists of the basilar membrane, the tectorial membrane and hair cells
The hair cells are the auditory receptors.
Fine cilia extensions of the hair cells attach to the tectorial membrane
Sound waves cause the basilar membrhane to move relative to the tectorial
membrane which bends the cilia of the hair cells. This bending of the cilia produces receptor potentials
(For more detail, see pages 214-218 of textbook)
Auditory transduction
(For more detail, see pages 214-218 of textbook)
From the Ear to the Primary Auditory Cortex
- The organ of Corti sends auditory information to the brain by the cochlear nerve.
- The axons enter the cochlear nuclei where they synapse.
- The axons of the cochlear nuclei then enter the superior olivary complex.
- Axons from superior olivary complex pass through a bundle of fibres (lateral lemniscus) and enter the inferior colliculus.
- The axons then pass to the medial geniculate nucleus of the thalamus which make their way to the primary auditory cortex of the temporal lobe.
Tonotopic Representation
Topography: features and landscapes, in this case of sound frequency and anatomy.
§ The major principle of cochlear coding is that different frequencies produce maximal stimulation of hair cells at different points on the basilar membrane.
§ Like the basilar membrane, the auditory cortex is also organised according to frequency, i.e. different parts of the auditory cortex respond best to different frequencies.
§ This organisation of different frequencies of sound that are represented in different places of the auditory cortex, is known as tonotopic representation.
Organization like this allows us to isolate sounds, localize too. Not sure how we filter all the noise, also activiting cells.
Perception of Complex Sounds
A principle function of the auditory system is to identify the sound.
§ Perception of complex sounds is accomplished by
neural circuits in the auditory cortex:must be specialized to preserve info
- axons have voltage-dependent potassium channels that
produce very short action potentials - terminal buttons are large and therefore release large amounts of glutamate
- postsynaptic membrane contains neurotransmitter dependent ion channels which act rapidly and produce strong EPSPs
- terminal buttons synapse with the membrane of the soma of the postsynaptic neuron. This minimizes the distance between the synapse and the axon
Makes things gi zippy (fast)
The Primary Auditory Cortex
The Primary Auditory Cortex
§ The primary auditory cortex is hidden on the upper bank of the lateral fissure.
§ The belt region is the first level of auditory association cortex.
§ The parabelt region is the second level of auditory association cortex.
Core, belt parables.
Hierarchy, like vision.
To topic representation.
Levels of analysis of auditory info start here.
The “What” and “Where” Streams: Where Vision and Audition Converge
Dorsal stream - terminates in the posterior parietal cortex. Involved in sound localisation (“where”)
Ventral stream - terminates in the temporal lobe. Involved with analysis of complex sounds (“what”)
Overlap shows how we use both vision and auditory to understand sounds and sights. In conjunction, convergence. Processing problem solving. Suggests convergence sight and sound, imp. Aspects of high order cognitive processing.
Perception of Music requires,
Yogita like opera.
§ Music is a special and complex form of auditory processing
§ Particular combinations of musical notes can be perceived as
happy, sad, pleasant, unpleasant, consonant, dissonant, etc.
§ Music perception requires:
- recognition of sequences of notes,
- rules that govern permissible pitches,
- rhythmic structure,
- memory capacity
Partly culturally determined.
Different regions of the brain are involved in different aspects of musical perception:
§
- recognition of harmony - inferior frontal cortex
- underlying beat - right auditory cortex
- rhythmic patterns superimposed on the rhythmic beat - left auditory cortex
- musical timing and movements - cerebellum and basal ganglia
Recognition of complex auditory sounds (Lewis et al., 2004)
§ Presented subjects with “recognisable” recordings of environmental sounds (e.g. tools, pouring liquids, dropping objects) - activated region of the ventral stream
§ Sounds were presented backwards as well (preserved complexity but difficult to recognise) - does not activate auditory cortex. ParticulR ventral pathway specific to audition, just for recognition of sounds,
Means we have an auditory memory,
No animal model of.
Amusia
§ After sustaining brain damage, patient I.R. developed complete amusia, the inability to perceive or produce melodic music.
§ She could recognise different emotions expressed in music.
§ She could also recognise environmental sounds, converse and
understand speech.
§ However, she was unable to tell the difference between consonant (e.g. harmony; pleasant sounding) and disonante (unstable, transitional) music.
Birdsong: Auditory Communication in Birds
Birds raised in different regions acquire different dialects
Songbirds, hummingbirds and parrots.
Bats and whales and dolphins only other mammals,
Communicate using “voice”
Song used for, attention, mating, danger?
Eearly upbringing leads to learning of language.
Birdsong and humans language have broad simialriities.
Innate similar in enviorment.
Complexity vary.
Type and elements employed like syllables differ.
Patterns of speech sounds.
So it make an intereting and hot area of study.
Neurobiology of birdsong.
Organization of brain structures for vocal learning.
Emotion in marmates monkey too.
Hmm study cat vocal calls to humans. That would be fun! Meal time meow!
Birds may help with genetic and speech impairments and disorders brain issues.
Echolocation: Auditory Communication in Bats
§ Echolocating bats use sound waves to navigate, hunt and communicate.
§ Echolocation works like a sonar; the bat navigates by the echoes that it hears.
§ A bat with a 40cm wingspan can navigate through openings in a 14 x 14 cm mesh made from very fine nylon thread while flying in total darkness.
Bats have cochlea fovea, frequency range for doc location more neurons, cortex specialized Eco inputs.
Distance, location, oeitentTion, velocity,
Night to Eco vision.
Sheds light into how we use audition to navigate the world.
Goodale Eco location for visually impaired!