Week 3 Flashcards

1
Q

Wat is X in het knikker-vazen model?

A

Het aantal rode knikkers in de steekproef (het sample).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Wat is nu, uitgedrukt in X en N?

A

X/N
Het aantal rode knikkers in de steekproef / de grootte van de steekproef.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Geef de Hoeffding Inequality:

A

P[|E.in-E.out| > epsilon] = 2e ^(-2(epsilon^2)N)
voor alle epsilon > 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Noem de twee soorten supervised learning-problemen:

A

Classificatie: Y bestaat uit een klein aantal elementen (Bij binair: 2 elementen)
Regressie: Y = R

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Linear regression

A

A linear model based on the signal function. The output is the signal.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Logistic regression

A

A linear model that outputs a probability between 0 and 1. Holds no threshold at all:
h(x) = theta * ( w^T * x )

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Give the logistic function theta(s):

A

theta(s) = (e^s) / (1+e^s)
output between 0 and 1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Linear classification

A

Uses a hard threshold on the signal.
h(x) = sign(w^T *x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

classification output…

A

is bounded

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

regression output…

A

is real

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

What is meant with the ‘soft threshold’?

A

the logistic function theta(s)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Why is the logistic function also called a sigmoid?

A

because its shape looks like a flattened out ‘s’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

What is the target that a logistic function is trying to learn?

A

A probability that depends on the input x.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

What is the target function in logistic regression?

A

f(x) = P[y=+1 | x]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Error measure

A

How likely it is that we would get this output y from the input x if the target distribution P(y|x) was indeed captured by our hypothesis h(x).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Give the formula for the in-sample error in linear regression:

A

E.in(h) = 1/N * (w.T*x.i - y.i)^2

voor alle n in N

17
Q

method of maximum likelihood

A

Selects the hypothesis h(x) which maximises the probability to get all yn’s in the dataset from the corresponding xn’s

18
Q

Give the formula for the in-sample error measure for logistic regression:

A

Ein(w) = 1/N * ln(1+ e^(-yn* w.T *xn))

for all n in N.

19
Q

What is the target in linear regression?

A

A noisy target function formalized as a distribution of the random variable y.

20
Q

Linear regression: method and goal

A

We have an unknown distribution P(x,y) that generates each (xn,yn), and we want to find a hypothesis g that minimizes the error between g(x) and y with respect to that distribution.

21
Q

Matrix representation of Ein(h) in linear regression:

A

The N x (d+1) matrix with input vectors xn as rows and y the target vector as columns with yn as components/target values.

22
Q

How do you get the gradient of Ein(w) to be 0?

A

Solve the following for a w:

X^T * X * w = X^T * y

23
Q

Wat is ^y in de kwadratische fout?

A

De schatting volgens de hypothese.

24
Q

Wat is y in de kwadratische fout?

A

De correcte waarde, waar we op mikken (target waarde)

25
Q

Geef de formule voor de kwadratische fout (squared error):

A

e(^y, y) = (^y - y)^2

26
Q

Linear regression algorithm in 3 steps

A

1) Construct matrix X and vector y from the data set, with each x0=1.
2) Compute the pseudo-inverse of the matrix X.
3) Return wlin = pseudo-inverse of X * y

27
Q

OLS

A

Ordinary least squares

28
Q

hoe wordt de afgeleide van functie f in richting w.i geschreven?

A

omgekeerde a/ omgekeerde a w.i f(x)

29
Q

Wat is (omgekeerd driehoekje v) f(x)?

A

De vector van de afgeleides van f(x) in richting w0, … wn.

30
Q

Wat is de kleinste-kwadraten schatter (least-squares estimator)?

A

De oplossing wlin die je krijgt als je de gradient van E.in oplost voor gradient = 0.

31
Q

Wat is wlin?

A

w = ((X.T * X) ^-1) * X.T *y

32
Q

Wat kun je doen met de kleinste-kwadraten schatter?

A

y voorspellen voor een willekeurige x.

33
Q

Hoe voorspel je y voor een willekeurige x met de kleinste-kwadraten schatter?

A

^y = w.lin.T * x

34
Q

Wat doet de hat matrix?

A

Vertaalt de daadwerkelijke outputdata y naar outputdata die met de hypothese kloppen.

35
Q

What is the main difference between the learning approach and the design approach?

A

The role that data plays: in the design approach, the problem is well-defined and f can be analytically derived without seeing data. In the learning approach, data is needed to pin down f.