Vision and spatial cognition : Neurocognition of perception-action relations Flashcards

1
Q

Outline

A

1. Rôle précoce de l’action sur la vision

2. Rôle de l’action dans la perception des objets

  • *3. Rôle de l’action dans la perception spatiale**
    1. La perception spatiale se construit par l’action
    2. La perception spatiale est discontinue
    3. Bases neurales de l’espace péripersonnel
    4. Codage des objets dans l’espace péripersonnel
    • Effet de la localisation
  • Effet des propriétés fonctionnelles*
    5. Rôle du système moteur
    6. Validation du modèle
    7. Implication pour la pathologie - Déficit spatial localisé
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

1 - Early role of action on vision

A

Babies : before starting to interact with env, 2D vision like (dist btw obj = obj closer)

Held & Hein 1963
Kittens
> dark room 12 weeks : no dev of vision system
> Light 3h/d 6 weeks
> similar visual exp, diff visuo-motor exp (active/passive)
Res : passive has same behavior than blind cat

Motor activity coupled to vision is necessary to build a 3D perception of space

++ Mike May recovering sightness after 40 years
(2003, Nature neurosciences)
Deficit in 3D perception even after 2 years

++ Sequences of directions on a 3D dots matrix (Gandhi, Ganesh)
Long sequences : perf of blind real low
Teenagers after surgery (18w after) : perf like C
Coupling motor activity and vision allow to improve perception and representation of space

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

2 - Dual path model

A

Model : Goodale & Milner (95,08)

If action is necessary for perception, it must influence it for building 3D space.

Dorsal way 40/80 ms before
(latency of activation in brain visual area : Novak-Bullier 97)
> Sensory binding

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

2 - Motor action reduces temporal asynchrony

A

PSS : point of subjective simultanity

Corveleyn et al, 2012
Temporal jugement > which attribute changes first : color/position

Color should be changed 40ms before to be perceived as synchronous

Passive (perceptual) & active (motor pointing) condition

Results
Perceptual
PSS : 38 ms (point of subjective synchrony)
Motor
No more asynchrony

>> Sensory binding with action

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

2 - Theory of prediction model

A

Wolpert 90’s

Coello, Delevoye 2007

1) Un stimulus visuel donne lieu à une action et à des conséquences sensorielles

2) Création d’une association entre action et sensation
3) Création d’une association entre vision et action
4) Développement d’une représentation interne des relations entre vision et action (modèle inverse)
5) Développement d’une représentation des relations entre vision et conséquences sensorielles (modèle direct)
6) La representation interne des relations vision-conséquences sensorielles permet la constitution d’un système prédictif anticipant les conséquences des actions (goal of the brain is to predict)
7) L’anticipation de la conséquence des actions influence la perception

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

2 - Modèle prédictif : representation du but de l’action

A

We reprensent ONLY the goal of the action

Corveleyn & Coello 2014
meme paradigme
MID : Changement intervient au milieu du mouvement (pic de vitesse)
END : Changement intervient en fin de mouvement

PSS
Passive : 43ms
MID : 40ms
END : 10ms

If it was just action, without goal, no enhancement of perception

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

2 - Modèle prédictif : contraintes temporelles

A

How does the sensory binding last ?
If jitter too big, I can’t decide the action was from me (AGENCY)

Changement après le mouvement
250/300ms
au delà, asynchrony

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

2 - Modèle prédictif : contraintes spatiales

A

Over 4 cm : loss of the effect

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

2 - Modèle prédictif : apprentissage

A

Adaptation procedure :
60% color/pos synchronous
40% test to see the effect

Passive
Before/After : no change 30ms

Motor
Pre : 30ms
Post : 3ms

Sensory binding lasts 250/300ms but can be differed on time

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

2 - EEG Analysis

A

P100 occipital cortex
pre adaptation < post adaptation

Anticipating

La réalisation d’une action optimise les traitements sensoriels à l’endroit du but de l’action et au moment où celui ci est atteint (ou à la suite d’un délai en cas d’apprentissage).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

3 - Role of action in spatial perception

A

La perception spatiale est DISCONTINUE

Animals flight zone > fight zone
Humans > Thresholds due to sensory system (old view)
touch < smell < hear < see

> Functional thresholds
Diff spaces for diff actions : brain uses motion parallax (vision) to control posture & locomotion

Espace corporel < pericorporel < peripersonnel < extra personnel accessible < extra personnel distant

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

3 - Neuroanatomic aspects

A

Frontal : intention motrice
Voie dorsale : closed action
Voie ventrale : Long distance action (throw somthing)
Voie médiane : motricité symbolique (gesture / apraxia)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

3 - Peripersonal space

A
  • Contains the objects that we can immediately reach,
  • Specifies our private area in social context
  • Contains the obstacles to which the organism must pay attention in order to avoid colliding with them, in particular when gesturing.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

3 - Methods to study pps

A

Reachness test (Coello Delevoye)“Can you reach this object ?”
> logistic function

Aligment test (Constantini)“Green or red ?”
Simon effect because of handler of the cup (closed)

Bissection test (Longo et al)
Deviation to the left for pps and to the right for further away
> RH more involved in closed activity ?

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

3 - Neural basis of pps

A

Visual fields

Left & right
only nasal projections on retina cross at chiasma

Up
what’s coming from upper visual field (far) > bottom of retina > bottom of calcarine sulcus > ventral pathway processing (vice versa)

Dorsal stream related to action because deals with what is btw you and the object (same conclusion than Previc)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Boundaries measures

A

Preliminary measure of reachability and response time

> method of constant stimuli = cylinders, distance 0.2 to 1.6m by step of 5 cm x 4 trials

Reachability boundaries :
90% - 150 % : boundaries
> 150% : extrapersonal

17
Q

4 - Coding objects in pps : localisation effect

A

Culham et al 2008 : SPOC activtity increases when :
- object touched, reached and passive viewing of reachable objects
→ automatically coding near objects

18
Q

4 - Coding objects in pps : functional properties effect

A

Kalenine et al (2015)

Virtual reality - RT

Task
Can you reach the object ? [manipulation prop]
Is it present in the kitchen ? [functional prop]
→ response with foot to avoid interference with mvt involved in the object

Stim
non conflictual obj (nco) : manipulate = function
conflictual obj (co) : manipulate ≠ function
Diff distance in % of pps (boundaries measured)

Hyp
[manip] influenced by distance
[func] Quicker for non conflictual obj

Res
Semantic task : no effect of space - faster in pps for nco
Reachability : faster in pps for nco

Interpretation
Les aspects fonctionnels et de manipulation sont activés lors de la présence d’un objet dans l’espace péripersonnel.
Les aspects fonctionnels et de manipulation font partis des connaissances sémantiques sur les objets.

19
Q

5 - role of motor system

A

4K stereoscopic projection
Virtual reality : possible to build reachable objects thatn are not graspable : distorted object with pixelised contours

N = 12

Object: normalised 7.5 cm width (variable height), same colour
20 objects (bottle, glass, can, gourd, hourglass, dice, ball, vase …)
**\>\>** Prototypical & distorted

Tasks
Preliminary task : Boundary of pps
Reachability jugement task
Object identification

[SEE EEG & MOTOR ACTIVATION]

Results
Reachability task : lower RT for pps & eps (slower on boundaries)

Zoom on 8-13Hz : huge decrease of μ-rythm in pps for prototypical objects (no sign change for identification)
Motor sys involved in visual processing of pps

μ-power
decrease not the same w/r space only for prototypical objects

→ Motor sys only gets activated when you want to reach the object

L’implication du système moteur n’est pas automatique mais dépend de la tâche perceptive (distance is not enough) etde la familiarité des objets (experience is important).

20
Q

5 - EEG and motor activation

A

Motor system activation : maximal over parieto central area (rolandic and sensorimotor area) little bit controlateral

Just before the action : huge decrease of activity then increase (no increase when only imagining)

Analysis of periodin activity (1Hz > 45 - 80Hz)

μ rythm
Motor sys activated : alpha activity 8-13Hz (sure it’s motor sys)
Time frequency analysis = link btw function & time freq
μ desynchronisation = reduction of amplitude

21
Q

6 - Motor theory of spatial cognition

A

Predicition is the construction base of pps (embodied approach of space perception)

We use this representation for diff purposes :

  • Conceptualisation of space (“give me this cup”)
  • Social interaction
22
Q

7 - Validation of the model : action modification

A

If pps linked to action, I can change the pps by changing the possibility to act

We know that, tool use modify kinematics of mvt (as if target was closer) and somatosensory morphology of the arm.

Cardinali et al 2009
After tool use : reachability with hand +7 cm

23
Q

7 - Validation of the model : consequences modification

A

Modifying the feedback
Bourgeois & Coello 2012

Adaptation of the visuomotor system to a shifted visual feedback affects the perception of peripersonal space in a predicted way. Shifting the spatial consequences of acting in one direction has the effect of moving the boundary of perceived peripersonal space in the opposite direction.
The perception of peripersonal space relies thus on an action-dependent perceptual system which is affected by the calibration state of the motor system .

Ce sont bien les conséquences sensorielles qui sont représentées

24
Q

8 - Pathology : localized spatial deficit

A

Berti - Severe right neglect
Line bissection task
pointing (laser) / reaching
near / far
→ toujours fort décalage vers la droite en reaching mais pas en pointage far (only pps)

Constantini 2014
Same task but before and after observing the experimentator performing the task
→ C : near (= near or far+stick) space left bias / far space right bias (we knew)
→ Patients : Post with stick = neglect in far space
Post without stick = no neglect in far space

Gyrus angulaire : pps
Gyrus supramargianl : eps

25
Q

8 - Pathology : motor planning deficit

A

LH : motor adjustement (online control)
RH : Motor planning (final pos accuracy) = perception of PPS + attention

Each hemisphere is specialized for controlling different aspects of the motor task. Patients with unilateral brain damage have confirmed substantial deficits in the ipsilesional arm

Lesions in the LH
deficits in the spatio-temporal features of motor trajectories, suggesting a deficit in the on-line control of voluntary action

Lesions in the RH
deficits in final position accuracy, suggesting a specific deficit in accurately planning the initial parameters of voluntary action, with no impairment in on-line control.