vision Flashcards

You may prefer our related Brainscape-certified flashcards:
1
Q

primary visual cortex

A

occipital lobe, striate cortex, receives input from visual relay nuclei of thalamus (afferent nerves)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

secondary visual cortex

A

pre striate cortex, receives input from primary visual cortex

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

visual association cortex

A

inferotemporal cortex and posterior parietal cortex, recieves input from secondary visual cortex

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Scotoma

A

areas of blindness in corresponding areas of visual field, caused by damage to primary visual cortex. Scotomas are plotted with perimetry tests

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

completion

A

Brain builds up a visual field despite we have a blind spot, might be because of residual visual capacaties in the scotoma but also without it (example, patients who are hemianopsic (having a scotoma covering half of the visual field)
may see an entire face when they focus on a person’s nose, even when the side of the
face in the scotoma has been covered by a blank card)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

blindsight

A

the ability to respond to visual stimuli in a scotoma with no conscious
awareness of them, this supports the parallel models rather than serial.

Two neurological interpretations of blindsight have been proposed:
o striate cortex is not completely destroyed, remaining
islands of functional cells are capable of mediating some visual abilities in the
absence of conscious awareness.
o The visual pathways that ascend directly to the secondary visual
cortex from subcortical visual structures without passing through the primary
visual cortex are capable of maintaining some visual abilities in the absence of
cognitive awareness.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Dorsal stream

A

primary visual cortex to the dorsal prestriate cortex (V2) to the posterior parietal cortex (association cortex).
- where pathway, visual spatial perception
- control of behavioral pathway, visually guided behavior

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

ventral stream

A

primary visual cortex –> ventral prestriate secondary cortex –> association cortex of inferotemporal cortex
- what pathway, visual pattern recognition
- conscious visual perception

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

prosopagnosia

A

Fusiform Face Area (FFA & OFA on the ventral surface of the
temporal lobe and occipital lobe)
- maybe neurons in inferotemporal cortex
- Confirmed prosopagnosia sufferers could recognize
faces unconsciously (No conscious recognition but
different skin conductance
responses for familiar faces.)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

akinetopsia

A

Deficiency in the ability to see smooth movement
- Can be triggered by high doses of antidepressants.
- Damage to medial temporal area (MTA or V5).
- Each MT neuron has a large binocular receptive field, allowing it to track movement over a
wide range.
- * Primary Visual Cortex neurons also
respond to movement but not to direction.
* 95% of MT neurons (large binocular
receptive fields) respond to direction

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Licht kan je op twee verschillende manieren beschouwen:

A

 Photons: discrete particles of energy (300.000 km/sec)
 Energiegolven

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Licht heeft bepaalde belangrijke eigenschappen:

A

 Golflengte > kleuren
 Intensiteit > helderheid

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Het aanpassen van de configuratie van de lens om scherp beeld op retina heet

A

accommodation en wordt gereguleerd door de ciliary muscles:
 Object dichtbij > natuurlijke cilinder-vorm lens > refract (buigen) light
 Object ver weg > lens wordt plat

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Er is echter altijd een verschil in de positie van hetzelfde beeld op de twee netvliezen:

A

binocular disparity, omdat je ogen de wereld niet van precies dezelfde positie bekijken
 Dit verschil is groter voor objecten dichtbij
 De mate van binocular disparity kan gebruikt worden om een 3D-beeld te construeren uit 2D beelden van retina
 Cocktail Sausage: als wijsvingers bijna tegen elkaar, armen strekken, kijken in de verte > er ontstaat een ‘sausage’ tussen je vingers (werkt niet als 1 oog open)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

het proces waarmee we oppervlakken waarnemen, het visuele systeem extraheert informatie over randen en daaruit leidt tot het uiterlijk van grote oppervlakken

A

surface interpolation

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

duplexity theory

A

De theorie dat kegeltjes en staafjes verschillende soorten zicht mediëren:
 Phototopic vision: cone-mediated zicht bij goed licht > high acuity, kleur
 Scotopic vision: rod-mediated zicht bij slecht licht > low acuity, geen kleur
 Bij zwak licht kunnen kegeltjes niet worden geactiveerd, staafjes gevoeliger

17
Q

Er zijn verschillen in de verdeling van rods/cones over retina:

A

 Kegeltjes: in fovea, daalt enorm bij grenzen fovea
 Staafjes: niet in fovea, aantal stijgt enorm bij grenzen fovea, maximum bij 20
graden van centrum fovea
 Meer staafjes in nasal hemiretina (deel retina naast neus) dan in temporal hemiretina (deel retina naast ‘temples’)

18
Q

De overgang van phototopic naar scototopic vision

A

Purkinje effect:

19
Q

Transduction

A

de omzetting van de ene vorm van energie in de andere
 Visuele transductie: omzetting van licht in neurale signalen door visuele receptoren

20
Q

mach bands

A

Adjacent to each edge, the brighter stripe looks brighter than it really is and the darker stripe looks darker than it really is. The nonexistent stripes of bright- ness and darkness running adjacent to the edges. –> they enhance the contrast at each edge and make the edge easier to see.

–> contrast enhancement

21
Q

on center cells & off center cells

A

On-center cells respond to lights shone in the central region of their receptive fields with “on” firing and to lights shone in the periphery of their receptive fields with inhibi- tion, followed by “off” firing when the light is turned off.

Off-center cells display the opposite pattern: They respond with inhibition and “off” firing in response to lights in the center of their receptive fields and with “on” firing to lights in the periphery of their receptive fields.