V-Risk and Returns-2 Flashcards

1
Q

计算债券 total return

  1. 三个组成部分
  2. 计算逻辑
A
  1. coupon and principle payment
  2. coupon reinvestment
  3. capital gain loss: 不持有至到期
  4. 根据YTM计算购入价格
  5. 根据出售时间(持有至到期)计算出售价格
  6. 计算coupon reinvestmen @YTM的终值
  7. (2+3)/1并年化,即total return
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

比较total return和YTM

  1. 持有到期,@YTM再投资,YTM不变
  2. 持有到期,@YTM再投资,YTM变化
  3. 提前出售,@YTM再投资,YTM不变
  4. 短期出售,刚购入后YTM变化
  5. 长期出售,刚构入后YTM变化
  6. interest risk包括
A
  1. total return = YTM
  2. total return 随YTM同向变化
  3. total return=YTM
  4. price risk影响更大,total return & YTM反向变化
  5. reinvestment risk影响更大,total return % YTM同向变化
  6. coupon reinvestment risk + price risk
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

【Duration】

  1. 含义
  2. 假设
  3. 区分yield/curve duration
A
  1. 弹性概念:sensitivity of bond full price to change in YTM
  2. 假设只有YTM变化,时间不变化,即考虑YTM变化之一瞬间

因此对于full price之变化,只在于flat price之变化,而accrued interest未变

  1. yield: 考虑bond own YTM
    curve: bond price change相对于整个市场 benchmark yield curve
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q
  1. Macaulay Duration计算
  2. Modified Duration与MacDur转换
  3. ModDur与full price转换
A
  1. 以各现金流现值作为权重

CF1/PX1+CF2/PX2+CF3/PX3…..

  1. ModDur=MacDur/ (1+r) 注意期间利率
  2. %PVfull price = -AnnModDur X Δyield
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

【Approximate ModDur】

  1. 公式
  2. 意义
  3. 特点
  4. ApproxMacDur与ApproxModDur
A
  1. 见图
  2. 不使用数学计算,而是图中切线斜率原理,用计算器也可得出非常精确的估计
  3. 计算出本身即为annulized值
  4. ApproxMacDur=ApproxModDur`(1+r)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

【Effective Duration】

  1. 公式
  2. 适合衡量何种债券?为何?
  3. 传统久期算法不适用于2
A
  1. 见图
  2. 含权债券,因含权债券does not have a well-defined internal rate of return,只能用benchmark衡量

传统久期算法YTM是针对债券本身的

  1. 含权,MBS (prepayment实质也是call option)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q
  1. EffDur 与传统久期的区别 3- option free bond
  2. EffDur 与ApproxDur的区别
A
  1. 即使不含权,计算结果也不相同
  2. 只有在yield curve complete flat的情况下两者会相同
  3. yield curve越平,time to maturity越短,price closer to par的情况下,两者差异会更小
  4. Appro可以通过选取更小的yield change来增加精确度

Eff这种做法无效

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

【Key Rate Duration】

用途

A

之前的久期计算,假设yield curve平移

在yield curve shaping 变化/变陡变平的情况下,

用Key Rate Duration计算

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

【Duration Property】

  1. MacDur随time to maturity变化的图形
  2. MacDur of zero coupon bond
  3. MacDur/ ModDur of perpetual bond
A
  1. 如图。考虑accrued interest
  2. 即等于maturity N
  3. MacDur = (1+r)/r = 1+1/r, = ModDur+1

ModDur=1/r

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

【Duration Property】

关于此图的5个结论

A
  1. 零息债券麦考利久期等于term
  2. 永续债券麦考利久期恒定(1+r)/r
  3. 普通债券,平价和溢价发行:随maturity变长,久期也升高,逼近(1+r)/r
  4. 普通债券折价发行:久期先增加(超过永续债),再减少
  5. 纵截面看:coupon effect,低coupon久期长
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

MacDur

coupon rate/ YTM的关系

A

YTM同coupon rate:

都遵循coupon effect, coupon/YTM和久期反向变动

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Callable Bond

Price&Yield Chart

  1. 图形
  2. 价格特征2
  3. 久期理解方式2
A
  1. 见图
  2. 价格始终低于不含权
  3. YTM低于一定程度,issuer call,价格不再上升
  4. 字面理解:call则说明收回时间变短,久期变短
  5. 定义理解:call则价格不再变动,久期变小
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Putable Bond

Price&Yield Chart

  1. 图形
  2. 价格特征2
  3. 久期理解方式2
A
  1. 如图
  2. 价格始终高于不含权
  3. YTM高到一定限度,put,价格不再下降
  4. 时间维度:put则提前收回,久期变短
  5. 定义维度:put则价格不再下降(变动),久期变小
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

【Portfolio Duration】

  1. 两种计算方式
  2. 第二种方式limitation
A
  1. 综合所有现金流,按现值加权,IRR也按估计计算

比较复杂,现实中不实用

  1. 以各债券的久期作为加权

limitation:assume only parallel shift in the yield curve

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

【Money Duration】

  1. Money Duration 公式
  2. 已知利率变化,求price change
  3. PVBP: 缩写
  4. PVBP两种求法
A
  1. Money Duration= AnnModDurXPVfull (100)
  2. 利用%ΔPV=annModDur * Δyield, 求价格变化的百分比,乘以current full price,得出price change
  3. price value of a basis point

4-1. PVBP={(PV-)-(PV+)}/2

4-2. 同2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

【Convexity】

  1. ApproxCon 公式
  2. Convexity to Price change% 公式
  3. 以上公式注意
  4. Convexity of zero coupon bond
  5. Convexity年化时注意
A
  1. 见图
  2. %Δprice = (-AnnModDur*Δyield)+(0.5*AnnCon*Δyield2)

3注意符号:利率上升价格下降时

  1. = [N-(t/T)]*[N+1-()t/T]/ (1+r)2
  2. 年化:除以periodicity的平方。如半年债券,则除以4
17
Q

【Convexity】

  1. money convexity=
  2. 从money convexity求price change公式
A
  1. = ApproxCon*market value (or per 100 par)
  2. Δprice=(-MonDur*Δyield)+(0.5*MonCon*Δyield2)
18
Q

【Convexity】

  1. factors to greater convexity 2
  2. 结论2
A
  1. 同duration:longer time to maturity, lower coupon rate, lower YTM
  2. 特殊: dispersion of cash flow: 两个久期相同债券,greater dispersion of CF, bigger convexity
  3. 凸性大的债券,利率下降价格上升幅度大,利率上升价格下降幅度小,总是outperform
  4. 同样,这类债券价格也高。no free lunch
19
Q

【Yield Volatility】

measure interest rate risk

两个维度

A
  1. per basis point change: 实质就是久期和凸度。YTM每改变1bp
  2. number of bs change: 实质就是yield volatility
20
Q
  1. 比较investment horizon, MacDur

于interest risk之关系3

  1. Duration Gap
A
  1. 持有期长于MacDur,reinvestment主导,risk to lower interest rate

持有期等于MacDur,两者抵消,没有interest rate risk

持有期短于MacDur, price change主导,risk to higher interest rate

  1. Duration Gap=MacDur-Investment horizon

负数:长期

0:等于

正数:短期

21
Q

对于Callable bond/ putable bond

MacDur

ModDur

EffDur

哪个值最低?

A

EffDur,

because it takes the effect of the call option into account

22
Q

Calculate Capital gain/loss

  1. what brings cap gain/loss?
  2. compare basis
  3. calculate
A
  1. after purchase, YTM changes leads to price change.

(6%-7%)

  1. carrying value/ current value at the price trajectory at current time (this trajectory is preset with 6% at purchase)
  2. carrying value = purchase price + amortized discount/ - amortized premium