Unit 9 Convergence Tests Flashcards
Order of Tests
- Determine if Absolute Value Test Can Be Used
- Direct Recognition: Geometric, Telescoping, Harmonic, P-Series, Alternating, Alternating Harmonic
- Divergence Test
- Comparison Test
- Limit Comparison Test
- Integral Test
- Ratio Test
- Power Series
Determine if Absolute Value Test Can Be Used
If Σn=1∞ |an|converges, then Σn=1∞ an converges.
ONLY WORKS IF Σn=1∞ |an| CONVERGES
Use Comparison Test to prove Σn=1∞ |an|converges.
Geometric Series
- Direct Recognition
-Looks like: a+ar+ar²+ar³+…
-Converges to a/(1-r) if |r|<1 OR ELSE IT DIVERGES
Telescoping Series
- Direct Recognition
-Can Converge or Diverge - Subsequent terms cancel out previous terms
- Use Partial Fractions or Law of Logs to put into proper form
Harmonic Series
- Direct Recognition
- Diverges
- Grows without an upper bound
- EX: 1 + 1/2 + 1/3 + 1/4 + 1/5 + … + 1/n
P-Series
- Direct Recognition
- Converges if p>1, Diverges if p≤1
- Form: Σ 1⁄xp
Alternating Series
- Direct Recognition
- Converges if limn→∞ bn = 0 AND function is decreasing
- Form: Σ (-1)nbn)
Alternating Harmonic Series
- Direct Recognition
- Converges
- Form: Σ (-1)n⁄n
Divergence Test
Diverges if limn→∞ an<= 0
Otherwise, it doesn’t tell you ANYTHING
Comparison Test
Pick a function (bn)
If bn converges and 0 ≤ an ≤ bn OG series converges.
If bn diverges and 0 ≤ bn ≤ an OG series diverges.
Limit Comparison Test
Pick a function (bn)
limn→∞ an⁄bn > 0 and finite AND bn > 0 AND an > 0
If Σn=1,∞ bn converges, then OG series converges.
If Σn=1,∞ bn diverges, then OG series diverges.
Integral Test
If function f(x) an is continuous, positive, and decreasing, then:
If ∫a∞ f(x)dx converges, series converges
If ∫a∞ f(x)dx diverges, series diverges
Ratio Test
If limn→∞ an+1⁄an ≠ 1, then:
If limn→∞ |an+1⁄an| < 1, series absolutely converges
If limn→∞ |an+1⁄an| > 1, series absolutely diverges
Power Series
For any Power Series Σ Cn(x-a)n, it can be one of the following:
- Series only converges at x=a, otherwise it diverges. Radius of Convergence (R) = 0
- Series converges absolutely (R=∞)
- Series converges for Interval I: (a-R, a+R) and diverges outside
To find Interval of Convergence, use Ratio Test
Let an = Cn(x-a)n
- If limn→∞ |an+1⁄an| = ∞, then series diverges everywhere but x=a (R=0)
- If limn→∞ |an+1⁄an| = 0, then series converges everywhere (R=∞)
- If limn→∞ |an+1⁄an| = K(x-a) where K is finite and non-zero, then it converges when K(x-a) < 1 ∴ |x-a| < 1⁄K ⇒ R=1⁄K and Interval: a-1⁄K<x<a+1⁄K