MATH3B Formulas Flashcards
f(x) = cotx
f’(x) = -csc²x
f(x) = secx
f’(x) = secxtanx
f(x) = cscx
f’(x) = -cscxcotx
∫tanxdx
ln|secx|+C
∫cotxdx
ln|sinx|+C
∫secxdx
ln|secx+tanx|+C
∫cscxdx
-ln|cscx+cotx|+C
tan²x
sec²x-1
sec²x
tan²x+1
csc²x
1+cot²x
∫√(a²-x²)dx
asinθ
∫√(a²+x²)dx
atanθ
∫√(x²-a²)dx
asecθ
Surface Area
About x-axis
if it’s f(x)
∫2πy√(1+(f’(x))²dx
if it’s f(y)
∫2πy√(1+(f’(x))²dy
About y-axis
if it’s f(x)
∫2πx√(1+(f’(x))²dx
if it’s f(y)
∫2πx√(1+(f’(y))²dy
Midpoint Rule and Error
Δx = (b-a)/n
Rule:
Mn = Δx * avg X value for each rectangle from Right
Error Bound:
|EM| ≤ k(b-a)3/24n2
where k = f’‘(x)
Trapezoid Rule and Error
Δx = (b-a)/n
Rule:
Tn = Rn+Ln⁄ 2
Error Bound:
|ET| ≤ k(b-a)3⁄ 12n2
where k = f’‘(x)
Centroid Calculations
m = ρ∫[f(x)-g(x)]dx
Mx = ρ∫1/2[f(x)2-g(x)2]dx
My = ρ∫x[f(x)-g(x)]dx
Linear Equations
dy/dx + P(x)y = Q(x)
I(x) = e∫P(x)
y = 1/I(x) [∫I(x)Q(x)dx + C]