Unit 3 - More Derivatives Flashcards
Chain Rule
f(g(x)) = f’(g(x))*g’(x)
Chain Rule (notation)
dy/dx = dy/du*du/dx
Finding dy/dx parametrically
dy/dx = (dy/dt) / (dx/dt)
(f^-1)’(b) =
1/f’(a)
Derivatives of inverse functions (definition)
If f is differentiable at every point on interval I and f’(x) is never zero on I, then f has an inverse and f^-1 is differentiable at every point on interval I
d/dx(sin^-1x)
1/sqrt(1-x^2)
d/dx(tan^-1x)
1/(1+x^2)
d/dx(sec^-1x)
1/(|x|sqrt(x^2-1))
d/dx(cos^-1x)
pi/2 - sin^-1(x)
d/dx(cot^-1x)
pi/2 - tan^-1(x)
d/dx(csc^-1x)
pi/2 - sec^-1(x)
Calculator conversion -
d/dx(sec^-1x)
cos^-1(1/x)
Calculator conversion -
d/dx(cot^-1x)
pi/2 - tan^-1(x)
Calculator conversion -
d/dx(csc^-1x)
sin^-1(1/x)
d/dx(e^x)
e^x
d/dx(a^u)
a^uln(a)du/dx for a>0 and a doesn’t equal 1
d/dx(lnu)
1/u*du/dx
d/dx(log_a(u))
1/(ulna)du/dx for a>0 and a doesn’t equal 1