Two-Way RM ANOVA Flashcards
Two-Way RM ANOVA
An analysis of variance with two nominal IVs, one interval ratio DV, and the IV levels are related.
Main effect
Direct influence of IV on DV
Interaction
Effect of IV1 in the presence of IV2
Sources
- IV1
- IV1-error
- IV2
- IV2-error
- IV1 x IV2
- IV2 x IV2-error
- Ss
- Ss-error
- Total
df(IV1)
k(IV1) - 1
df(IV1-e)
df(IV1) * df(Ss-e)
df(IV2)
k(IV2) - 1
df(IV2-e)
df(IV2) * df(Ss-e)
df(IV1xIV2)
df(IV1) * df(IV2)
df(IV1xIV2-e)
df(IV1xIV2) * df(Ss-e)
df(Ss)
of IVs - 1
df(Ss-e)
N - 1
df(Total)
(k[IV1] * k[IV2] * N) - 1
MS(IV1)
SS(IV1)/df(IV1)
MS(IV1-e)
SS(IV1-e)/df(IV1-e)
MS(IV2)
SS(IV2)/df(IV2)
MS(IV2-e)
SS(IV2-e)/df(IV2-e)
MS(IV1xIV2)
SS(IV1xIV2)/df(IV1xIV2)
MS(IV1xIV2-e)
SS(IV1xIV2-e)/df(IV1xIV2-e)
F(IV1)
MS(IV1)/MS(IV1-e)
F(IV2)
MS(IV2)/MS(IV2-e)
F(IV1xIV2)
MS(IV1xIV2)/MS(IV1xIV2-e)
Two-Way RM ANOVA Hypothesis Test Steps
- Calculate F-ratios (will have 3)
- Set criteria for decisions
- Make decisions regarding significance
- Interpret (w/ comparisons if needed)
Set criteria for decisions
df(IV1) = df between (numerator), dfIV1-e = df w/in (denominator) for locating F[crit] of IV1 dfIV2 = df between (numerator), dfIV2-e = df w/in (denominator) for locating F[crit] of IV2 dfIV1xIV2 = df between (numerator), dfIV1xIV2-e = df w/in (denominator) for locating F[crit] of IV1xIV2