trigonometric formulae Flashcards
sin^2θ +cos^2θ =
1
sec^2θ -tan^2θ
1
cosec^2θ-cot^2θ
1
sin(A+B)
sinAcosB+cosAsinB
sin(A-B)
sinAcosB-cosAsinB
cos(A+B)`
cosAcosB-sinAsinB
cos(A-B)`
cosAcosB+sinAsinB
tan(A+B)=
(tanA+tanB)/(1-tanAtanB)
tan(A-B)=
(tanA-tanB)/(1+tanAtanB)
cot(A+B)=
(cotAcotB-1)/(cotA+cotB)
) cot(A-B)=
(cotAcotB+1)/(cotB-cotA)
sin2A
=(2tan^2A)/(1+tanA)=2sinAcosA
cos2A
=cos^2A-sin^2A=(1-tan^2A)/(1+tan^2A)
=2cos^2A-1=1-2sin^2A
tan2A
=(2tanA)/(1-tan^2A)
sin3A=
3sinA-4sin^3A
cos3A=
4cos^3A-3cosA
tan3A=
(3tanA-tan^3A)/(1-3tan^2A)
2sinAcosB=
sin(A+B)+sin(A-B)
2cosAsinB=
sin(A+B)-sin(A-B)
2cosAcosB
=cos(A+B)+cos(A-B)
(iv) 2sinAsinB
=cos(A-B)-cos(A+B)
(v) sinC+sinD=
2sin(C+D)/2 cos(C-D)/2
(vi) sinC-sinD
=2cos(C+D)/2 sin(C-D)/2
cosC+cosD
=2cos(C+D)/2 cos(C-D)/2
( viii )cosC-cosD
=-2sin(C+D)/2 sin(C-D)/2
(ix) sin(A+B)sin(A-B)
=sin^2A-sin^2B
(x) cos(A+B)cos(A-B)=
cos^2A-sin^2B
(xi) cosAcos2Acos4AcosBA…cos2^(n-1) A
=1/(2^n sinA) sin(2^n A)
□( ) Maximum value of acosθ±bsinθ
=√(a^2+b^2 )
- Minimum value of acosθ±bsinθ
=-√(a^2+b^2 )
Maximum value of acosθ±bsinθ+c
=c+√(σ^2+b^2 )
minimum value of acosθ±bsinθ+c=
c-√(a^2+b^2 )