Topic 1: Stats & Maths Background Flashcards
What is a discrete random variable?
A random variable that can take on a finite, or a countable infinite set of values, with associated propabilities such that:
What are the rules for probability distributions?
- All probabilities lie between 0 and 1.
- The null set is assigned the probability 0. The full set is assigned 1.
- The probability assigned toi an event that is the union of two disjoint events is the sum of the probabilities assigned to those disjoint events.
What is a CDF?
Cumulative distribution function.
Often denoted F(x), the value at any point is the probabilities that P(X <= x) where X is the random variable.
What is a PDF?
A probability density function.
A function such that:
How are PDF’s related to CDF’s?
For the PDF, denoted by f(x). (see below).
This is conditional on the CDF being differentiable.
What would you expect the CDF and PDF graphs for a normal distribution to look like?
How can the following be calculated?
Where F(x) is the CDF of X.
What is the first moment of a random variable?
It’s expectation (the mean of the population).
How can the expectation of a continous random variable be calculated?
What are higher moments of a random variable?
Expectations of the random variable raised to a higher power.
What is the formula for calculating the nth moment of a continous random variable X?
Where f(x) is the pdf of X.
What is a centered, or central moment? How is it calculated for a CRV?
Rather then taking the value of a variable to some power, the difference between that value and the mean is taken to some power.
What is the significance of the second central moment?
It is the variance of the the random variable, denoted
Define the CDF of a bivariate distribution
How could the CDF of x1 and x2 be calculated if they are both statistically independent?