Theorems norms Flashcards
1
Q
Let A ∈ C^n×n, for any consistent matrix norm || · ||
A
ρ(A) ≤ ||A||
2
Q
||A||1=
A
max ||Ax||1
x=!0 ||x||1
= max (1-j-n) SUM^m_i=1: |aij|
=max col sum
3
Q
||A||∞=
A
max ||Ax||∞
x=!0 ||x||∞
= max (1-i-m) SUM^n_j=1: |aij|
=max row sum
4
Q
||A||2=
A
max ||Ax||2
x=!0 ||x||2
= ^2root [λmax(A∗A)]
= spectral norm
λmax denotes the largest eigenvalue
5
Q
Let A ∈ C^n×n
Then
lim A^k = 0 ⇔
k→∞
A
ρ(A) < 1
6
Q
Gershgorin’s theorem
A
The eigenvalues of A ∈ C^n×n
Lie in the union of the n discs in the complex plane
Di = { z ∈ C : |z − aii| ≤ SUM^n_j=1,j=!i: |aij| }
i=1,2,..n