Theorems exp Flashcards
1
Q
For all A ∈ C^n×n and all t ∈ R,
d/dt e^(At) =
A
Ae^(At) = e^(At)A
2
Q
For A, B ∈ C^n×n, e^ ((A+B)t) = e^(At)e^(Bt) for all t if and only if
A
AB = BA
3
Q
Jordan form
A
Let A= XJX^-1 ∈ C^n×n with Jordan canonical form
J = diag(J1, J2, . . . , Jp),
where Ji is an mi × mi Jordan block with eigenvalue λi. Then
e^(At) = Xe^(Jt)X^-1
=X diag(e^(J1t), e^(J2t),…e^(Jpt)) X^-1
where e^(Jit) = e^(λit) [1 t t^2/2!….t^(mi-1)/(mi-1)!
.....t ....................1]