Teoremas Flashcards

1
Q

Bolzano

A

f continua [a,b]
f(a)·f(b) < 0
=> ∃c E (a,b) / f(c)=0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Valores Intermedios / Darboux

A

f continua [a,b]
f(a) ≠ f(b)
=> ∀ε entre f(a) y f(b) ∃c E (a,b) / f(c)=ε
(ε es un num real)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Weierstrass

A

f continua [a,b]
=> f(α) ≤ f(x) ≤ f(β) ∀x E [a,b]
α,β E [a,b]
(f está acotada y alcanza sus extremos)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

f continua definida en un compacto [a,b]
f([a,b])?

A

El recorrido de f es el compacto [m,M]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

f continua e inyectiva definida en un intervalo I

A

En I, f es estrictamente creciente o estrictamente decreciente

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Si f es continua e inyectiva en un intervalo I,
f^-1?

A

Su inversa es continua e inyectiva en su dominio f(I)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Rolle

A

f continua [a,b] y derivable (a,b)
f(a) = f(b)
=> ∃c E (a,b) / f’(c)=0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Valor Medio / Lagrange

A

f continua [a,b] y derivable (a,b)
=> ∃c E (a,b) / f’(c)=(f(b)-f(a))/(b-a)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

f(x) = y
f^(y) = x

A

(f^)’(y) = 1/(f’(f^(y))) = 1/(f’(x))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

f es inyectiva

A

x1=x2 => f(x1)=f(x2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

f tiene inversa

A

si es biyectiva (si es inyectiva y sobreyectiva en el codominio considerado)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly