Temp regulation self-study Flashcards
True or false: Nomral internal temp of the human body is only a few degrees below lethal limits.
True.
To keep body temperature constant, there must be a balance btwn ___ ___ and ___ ____.
heat production and heat loss
Physiological methods of conserving and dissipating heat are necessary to sustain the thermal balance necessary for human life. Aside from behavioral regulation (voluntary muscular activity), what system does the body use to regulatin core temperature?
Aside from behavioral regulation (e.g., voluntary muscular activity), the human body utilizes a system of thermoreceptors, a CNS “integrating” network, and effector mechanisms for shivering, sweating, and vasomotor actions to regulate core temperature.

What is heat exchange? What is temperature a reflection of?
- Heat exchange is the transfer of heat from hotter regions to colder regions. Heat always moves from higher to lower temperatures and in the process, high-temp regions become colder and low-temp regions becom warmer.
- Temperature is a reflection of how fast molecules are moving.
• High temperature means molecules are (on average) moving fast.
• Low temperature means molecules are (on average) moving slowly.
What are the 4 mechanisms of heat transfer?
conduction
convection
radiation
evaporation
What is conduction? What 3 factors does the amount of heat flowing depend on?
Conduction involves molecule to molecule transfer of heat where the fast (high-temperature) molecules lose some of their speed to the slow (low-temperature) molecules when they collide.
The amount of heat flowing depends on:
• the magnitude of the temperature gradient (the difference in temperature between the high- and low-temperature regions); the greater the temperature difference, the more heat flows.
• the surface area of the body involved; the more surface area, the more heat flows.
• how well the materials conduct heat (thermal conductivity). Thermal conductivity of air is very low; thermal conductivity of water is about 25 times higher than that of air.
Is conduction involved in heat exchange within the body? The environment?
Conduction is involved in heat exchange within the body (i.e., between the core and the shell of the body) and in heat exchange between the body and the environment.
What is convection? What is the difference when the low temp material is moving vs the high temp material?
Convection is also a molecule to molecule transfer of heat, like conduction. Unlike conduction, where high- and low-temperature materials do not move and the low-temperature material gradually becomes warmer, convection occurs where one material is flowing past the other:
If the low-temperature material is moving, then the slow (cold) molecules gain speed from the fast (hot) molecules like in conduction, but then these warmed-up molecules are moved away and replaced by new slow (cold) molecules. Examples include cold wind blowing on you (“wind chill”) and standing in a cold, flowing river. Because the conductivity of water is 25 times higher than air, you lose heat much faster in the flowing river than in a cold wind of the same temperature and speed.
If the high-temperature material is moving, then the fast (hot) molecules lose speed to the slow (cold) molecules like in conduction, but then these cooled-down molecules are moved away and replaced by new fast (hot) molecules. Examples include a hot wind blowing on you.
Is convection involved in heat exchange within the body? The environment?
Heat exchange due to convection can occur between the body surface and the environment (e.g., “wind chill”). Convection is also involved in heat exchange within the body. This is forced convection of the blood by the circulatory system (“Forced” refers to the heart actively pumping the material (i.e., the blood) that transfers the heat.)
What is radiation?
Is it involved in heat exchange in the environment? In the body?
Radiation: transfer of heat energy by electromagnetic waves. For heat transfer the most important wavelengths are in the infrared (IR) spectrum. Infrared vision cameras and tympanic thermometers measure the amount of IR radiation and convert that to a temperature. Examples include the sun radiating heat to warm you. Thermal radiation is only involved in heat loss from or heat gain from the environment and is not involved in heat transfer within the body.
What is evaporation? What are the 2 ways in which evaporation is important in heat loss from the body?
Is evaporation involved in heat loss from the environment? Within the body?
Evaporation: Change of state from liquid to gas. Heat is required for this phase transition and thus evaporation always results in heat loss. Evaporation is not involved in heat exchange within the body.
2 ways in which evaporation is important to heat loss from the body:
- Insensible evaporation heat losses arise from respiration and a slow transduction of water through the skin. Recall that exhaled breath is at 100% humidity and that water constantly leaves the body through the skin. When these two sources of water enter the gas phase, they evaporate and the body loses heat. Under resting conditions this amounts to the evaporation of about 25–30 ml of H2O per hour (which eliminates about 15–20 kcal/hr of heat).
- Sweating can reach levels as high as 2 liters per hour (4L/hr in heat acclimatized individuals). The evaporation of 2 liters of sweat would eliminate 1160 kcal of heat from the body. But, note that sweat must evaporate in order to be effective in removing heat. Sweat can only evaporate if the relative humidity of the air is <100%; at 100% the air is saturated with water and water cannot evaporate then. The lower the humidity, the faster sweat evaporates and the more efficient the cooling. Also, the faster the wind is blowing, the faster sweat evaporates (this is why fans are used).
Core-Shell (Periphery) model of the human body:
What parts of the body are considered the core? How is temperature sensed within the core?
What parts of the body are considered teh periphery (shell)? How is temperature sensed within the periphery?
Btwn the core and periphery, where is the site of the most heat production? Which is the site of heat exchange? Which of the two temperatures is regulated?
Core
• Core consists of the brain, viscera, skeletal muscle
• Core is the site of almost all heat production.
• Core contains internal temperature sensors and the neural regulatory mechanisms.
• It is the core temperature that is regulated. The core temperature is denoted Tc.
Shell (or Periphery)
• Periphery consists of skin and subcutaneous fat.
• Periphery is the site of heat exchange with the environment.
• Periphery also contains some important temperature sensors.
• The temperature of the periphery is not regulated or constant.

In the core-shell model, the core is at a constant temp, Tc. How does heat flow btwn the cor and the skin?
What is heat exchange btwn the core and skin primarily due to?
What effect does modifying cutaneous blood flow have?
How does heat flow btwn the skin and the environment?
The periphery is at Tc at its inner boundary and Ts (the skin temperature) at its outer boundary. Heat flows between the core to skin driven by the temperature gradient Ts – Tc
Heat exchange between the core and the skin is primarily due to forced convection of the blood. Varying cutaneous blood flow can greatly modify the effective thermal conductivity of the periphery.
Heat flows between the skin and the environment (at ambient temperature TA) driven by the temp gradient TA – TS.

True or false: For example, not all parts of the core are at TC, but only approximately so. Also, the core is not fixed. In extremely cold situations, the core shrinks to include only the vital organs and brain.
True.
What are the 3 most common sites of temperature measurement? Which one is most often measured and why?
The most common sites
• Oral. under the tongue
• Rectal. Rectal temperature is typically about 0.6 degrees C higher than oral temperature;
there are spatial variations of temperature within the core.
• Tympanic temperature is often measured since it more closely approximates the temperature of the brain and therefore of the hypothalamic control center of the thermoregulatory system. Today, tympanic thermometers are readily available and easier to use than other kinds.
True or false: Core temp can vary from person to person and response to activity pattern and environment can vary from person to person.
True.

What are the only 3 mechanisms by which the body can regulate its core temperature?
- vary the rate of metabolic heat production
- vary the rate of heat transfer between surface and environment
- vary the rate of heat transfer between core and surface.
In what wasy can metabolic rate be increased? How can metabolic heat production be reduced?
Metabolic rate can readily be increased by muscular activity (increases in muscle tone, shivering, voluntary activity).
However, in man the ability to reduce metabolic heat production is very limited.

Conduction, convection, and radiation can either cause the body to lose heat to the environment or gain heat from the environment.
TA > TS heat gain
TA < TS heat loss
TA << TS excessive heat loss
In each situation, what mechanisms does the body employ to combat heat loss or gain?
For TA << TS (i.e., a very cold environment) the only regulatory response in terms of the body surface is to reduce TS and thus reduce the temperature gradient between the skin and the environment, thereby reducing heat loss. TS is increased by increasing blood flow to the skin; TS is decreased by decreasing blood flow to the skin.
For TA > TS evaporation (sweating) is the only mechanism by which the body can lose heat. In this case, the body only gains heat from the environment by conduction, convection, and radiation.
What glands secrete sweat? How are those glands innervated?
What is sweat? Where does the water in sweat come from?
How does humidity and wind velocity impact the evaporation of sweat?
What is the other source of evaporative heat loss?
Sweat is secreted by eccrine and apocrine glands. Only eccrine glands are involved in thermoregulatory response. The innervation of the glands is sympathetic and cholinergic (unlike other sympathetic end organs).
Sweat is primarily a dilute salt solution (about 50 mM NaCl). The water in sweat comes from the blood volume and, if not replaced by drinking, is replaced by water movement from the ICF (but there is a lag time for this).
For water to evaporate from sweat (which must occur for sweat to cool the body) humidity must be less than 100%. Wind velocity increases the rate of evaporation of sweat.
There is another source of evaporative heat loss that is different from sweating and is not physiologically controlled. Insensible evaporation from skin and respiratory tract amounts to about 25–30 ml/hr (15–18 kcal/hr). It is unregulated and reasonably constant (although, of course, it varies with breathing rate, ambient temperature, humidity).
What are the 2 mechanism by which heat may be transferred from core to the surface? Which method is more important?
There are two mechanisms to conduct heat from the core to the surface: conduction and forced convection by blood. Normally forced convection by the circulatory system is more important.
How does conduction occur in the body?
Why is the circulation needed for heat transport?
Conduction: Simple cell-cell transfer of heat. Normally much less important than circulation, but it does determine the minimum amount of heat transfer in extreme cold when there is extensive peripheral vasoconstriction.
Circulation: Transport of heat by circulatory system needed to:
• counter non-uniformity of heat production within the body; different organs produce different amounts of heat because they have different metabolic rates.
• deal with varying levels of heat production (e.g.,removing excess heat during exercise).
• overcome insulating properties of subcutaneous fat layer; fat has a low thermal conductivity and does not transfer heat well.
True or false: The cutaneous circulation suplies the metabolic needs of the skin as well as transfers heat to the body surface by moving warm blood to the skin where it cools. Conversely, keeping blood out of the skin conserves heat. Under normal resting conditions, the skin is overperfused (i.e. blood flow is high relative to metabolic needs of the skin). Under neural control, blood flow the entire skin as a tissue can be varied from about 100 ml/min or less (cold environment) to as much as about 4000 ml/min (exercise in a warm environment)
True.
What 2 effects does transferring blood (and therefore heat) to the surface of the skin have?
- Overcomes the insulating properties of the subcutaneous fat layer
- changes effective thermal conductivity of skin
- effective thermal conductivity of the periphery of the body is defined by the equation
- H=Keff(Ts-Tc) where H is the rate of heat exchange btwn the core and surface, Keff is the effective thermal conductivity, Ts is skin temp, and Tc is core temp




