Summary Flashcards
Wavefuntion
Ψ(x, t)
Probability density
P(x, t) = |Ψ(x, t)|²
TDSE
ĤΨ = ih ∂Ψ/∂t
Hamiltonian operator
Ĥ = p̂²/2m + V̂ = −ħ²/2m ∇² + V
Separation of variables
Ψ(x, t) = ψ(x)T(t)
TISE
Ĥψ = Eψ
Normalization
∫ ψ∗ψ d³x = 1.
What are degenerate solutions?
Multiple solutions ψᵢ that have the same energy Eᵢ
.
Orthogonality
If Eᵢ ≠ Eⱼ,
∫ ψᵢ ∗ ψⱼ d³x = 0
General solution
Ψ(x, t) = Σᵢ Aᵢψᵢ(x)exp(−iEᵢt/ħ)
What are observables represented by?
An observable A is represented by an operator Â.
Eigenvalue equation of Â
Measurements of A give eigenvalues of Â
ÂΨᵢ = aᵢΨᵢ
Hermitian conjugate of Â
† of  is defined such that:
∫ Φ ∗ Â†Ψ d³x = ∫ (ÂΦ) ∗ Ψ d³x
Hermitian operator
† = Â
2 properties of Hermitian operators
- Only real eigenvalues
- Orthogonal eigenfunctions
Expectation value
⟨A⟩ = ∫ Ψ ∗ ÂΨ d³x.
Uncertainty
∆A = √⟨²⟩ − ⟨Â⟩² ‘
Commutator
[Â, B̂] = ÂB̂ − B̂Â
Compatibility
Two measurements “compatible” if [Â, B̂] = 0
Uncertainty principle
∆A ∆B ≥|i/2 ⟨[Â, B̂]⟩|
Angular momentum operator
L̂ =
|î ĵ k̂|
|x̂ ŷ ẑ |
|p̂ₓ p̂ᵧ p̂ᶻ|
note: î, ĵ and k̂ are unit vectors, not operators!
Commutation of angular momentum components.
Angular momentum components are not compatible:
[L̂ₓ, L̂ᵧ] = iħL̂ᶻ, etc