STP Questions Flashcards
Refer to the exhibit. Which statement is true about the output?
CAT1# show spanning-tree interface FastEthernet 0/1 detail
Port 1 (FastEthernet0/1) of VLAN0001 is forwarding
Port path cost 19, Port priority 128, Port Identifier 128.1.
Designated root has priority 32769, address 000a.4107.7400
Designated bridge has priority 32769, address 000a.4107.7400
Designated port id is 128.1, designated path cost 0
Timers: message age 0, forward delay 0, hold 0
Number of transitions to forwarding state: 1
BPDU: sent 237, received 1
CAT2# show spanning-tree interface FastEthernet 0/2 detail
Port 2 (FastEthernet0/2) of VLAN0001 is blocking
Port path cost 19, Port priority 128, Port Identifier 128.2.
Designated root has priority 32769, address 000a.4107.7400
Designated bridge has priority 32769, address 000a.4107.7400
Designated port id is 128.1, designated path cost 0
Timers: message age 1, forward delay 0, hold 0
Number of transitions to forwarding state: 0
BPDU: sent 1, received 242
CAT3# show spanning-tree interface FastEthernet 0/1 detail
Port 1 (FastEthernet0/1) of VLAN0001 is forwarding
Port path cost 19, Port priority 128, Port Identifier 128.1.
Designated root has priority 32769, address 000a.4107.7400
Designated bridge has priority 32769, address 000a.4107.7400
Designated port id is 128.1, designated path cost 0
Timers: message age 0, forward delay 0, hold 0
Number of transitions to forwarding state: 1
BPDU: sent 24, received 0
A. The port on switch CAT1 is forwarding and sending BPDUs correctly.
B. The port on switch CAT1 is blocking and sending BPDUs correctly.
C. The port on switch CAT2 is forwarding and receiving BPDUs correctly.
D. The port on switch CAT2 is blocking and sending BPDUs correctly.
E. The port on switch CAT3 is forwarding and receiving BPDUs correctly.
F. The port on switch CAT3 is forwarding, sending, and receiving BPDUs correctly.
Answer: A
Explanation
From the first lines of the “show” commands and the BPDU sent and received we can conclude:
CAT1 is forwarding and sending BPDUs correctly (BPDU: sent 237, received 1) but it is not receiving BPDUs.
CAT2 is blocking and receiving BPDUs correctly (BPDU: sent 1, received 242) but it is not sending BPDUs.
CAT3 is forwarding and sending BPDUs correctly (BPDU: sent 24, received 0) but it is not receiving BPDUs.
-> only answer A is correct.
Which of the following specifications is a companion to the IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) algorithm, and warrants the use multiple spanning-trees?
A. IEEE 802.1s (MST)
B. IEEE 802.1Q (CST)
C. Cisco PVST+
D. IEEE 802.1d (STP)
Answer: A
Explanation
MST maps multiple VLANs into a spanning tree instance, with each instance having a spanning tree topology independent of other spanning tree instances. This architecture provides multiple forwarding paths for data traffic, enables load balancing, and reduces the number of STP instances required to support a large number of VLANs. MST improves the fault tolerance of the network because a failure in one instance (forwarding path) does not affect other instances (forwarding paths).
Note: RSTP is automatically turned on along with MST (the “spanning-tree mode mst” in global configuration mode will turn on both RSTP & MST)
(Reference: http://www.cisco.com/en/US/docs/switches/datacenter/nexus5000/sw/configuration/guide/cli_rel_4_0_1a/MST.html)
What two things will occur when an edge port receives a BPDU? (Choose two)
A. The port immediately transitions to the Forwarding state.
B. The switch generates a Topology Change Notification (TCN) BPDU.
C. The port immediately transitions to the err-disable state.
D. The port becomes a normal STP switch port.
Answer: B D
Explanation
The concept of edge port basically corresponds to the PortFast feature. An edge port directly transitions to the forwarding state, and skips the listening and learning stages. An edge port that receives a BPDU immediately loses edge port status and becomes a normal spanning tree port.
(Reference: http://www.cisco.com/en/US/tech/tk389/tk621/technologies_white_paper09186a0080094cfa.shtml#edge)
Which statement is true about RSTP topology changes?
A. Only nonedge ports moving to the blocking state generate a TC BPDU.
B. Any loss of connectivity generates a TC BPDU.
C. Any change in the state of the port generates a TC BPDU.
D. Only nonedge ports moving to the forwarding state generate a TC BPDU.
E. If either an edge port or a nonedge port moves to a block state, then a TC BPDU is generated.
Answer: D
Explanation
When a Switch (Bridge) discovers topology change, it generates a TCN (Topology Change Notification) BPDU (Bridge Protocol Data Unit) and sends the TCN BPDU on its root port. The upstream Switch (Bridge) responds back the sender with TCA (Topology Change Acknowledgment) BPDU (Bridge Protocol Data Unit) and TCA (Topology Change Acknowledgment) BPDU (Bridge Protocol Data Unit)
The upstream Switch (Bridge) (bridge which received the TCN BPDU) generates another TCN BPDU and sends out via its Root Port. The process continues until the Root Switch (Bridge) receives the TCN BPDU.
When the Root Switch (Bridge) is aware that there is a topology change in the network, it starts to send out its Configuration BPDUs with the topology change (TC) bit set. Configuration BPDUs are received by every Switch (Bridge) in the network and all bridges become aware of the network topology change.
The switch never generates a TCN when a port configured for PortFast goes up or down -> it means no TC will be created for PortFast (or Edge Port) -> D is correct.
(Reference: http://www.cisco.com/en/US/tech/tk389/tk621/technologies_tech_note09186a0080094797.shtml)
Which of the following conditions guarantees that a broadcast storm cannot occur?
A. a native VLAN mismatch on either side of an 802.1Q link
B. BPDU filter configured on a link to another switch
C. Spanning Tree Protocol enabled on both Layer 2 and multilayer switches
D. PortFast enabled on all access and trunk ports
Answer: C
Which two statements are true about port BPDU Guard and BPDU filtering? (Choose two)
A. BPDU guard can be enabled globally, whereas BPDU filtering must be enabled on a per-interface basis.
B. When globally enabled, BPDU port-guard and BPDU filtering apply only to PortFast enabled ports.
C. When globally enabled. BPDU port-guard and BPDU filtering apply only to trunking-enabled ports.
D. When a BPDU is received on a BPDU port-guard enabled port, the interface goes into the err-disabled state.
E. When a BPDU is received on a BPDU filtering enabled port, the interface goes into the err-disabled state.
F. When a BPDU is received on a BPDU filtering enabled port, the interface goes into the STP blocking state.
Answer: B D
Which of the following will generate an RSTP topology change notification?
A. an edge port that transitions to the forwarding state
B. a non-edge port that transitions to the blocking state
C. a non-edge port that transitions to the forwarding state
D. an edge port that transitions to the blocking state
E. any port that transitions to the blocking state
F. any port that transitions to the forwarding state
Answer: C
What is the effect of configuring the following command on a switch?
Switch(config)# spanning-tree portfast bpdufilter default
A. If BPDUs are received by a port configured for PortFast, then PortFast is disabled and the BPDUs are processed normally.
B. If BPDUs are received by a port configured for PortFast, they are ignored and none are sent.
C. If BPDUs are received by a port configured for PortFast, the port will transition to forwarding state.
D. The command will enable BPDU filtering on all ports regardless of whether they are configured for BPDU filtering at the interface level.
Answer: A
Explanation
Please read the explanation of Question 3
Refer to the show spanning-tree mst configuration output shown in the exhibit. What should be changed in the configuration of the switch SW_2 in order for it to participate in the same MST region?
spanning-tree_mst_configuration.jpg
A. Switch SW_2 must be configured with the revision number of 2.
B. Switch SW_2 must be configured with a different VLAN range.
C. Switch SW_2 must be configured with the revision number of 1.
D. Switch SW_2 must be configured with a different MST name.
Answer: C
Switch R1 has been configured with the root guard feature. What statement is true if the spanning tree enhancement Root Guard is enabled?
A. If BPDUs are not received on a non-designated port, the port is moved into the STP loop-inconsistent blocked state
B. If BPDUs are received on a PortFast enabled port, the port is disabled.
D C. If superior BPDUs are received on a designated port, the interface is placed into the root-inconsistent blocked state.
D. If inferior BPDUs are received on a root port, all blocked ports become alternate paths to the root bride.
Answer: C
Based on the show spanning-tree vlan 200 output shown in the exhibit, which two statements about the STP process for VLAN 200 are true? (Choose two)
show_spanning-tree_vlan.jpg
A. BPDUs will be sent out every two seconds.
B. The time spent in the listening state will be 30 seconds.
C. The time spent in the learning state will be 15 seconds.
D. The maximum length of time that the BPDU information will be saved is 30 seconds.
E. This switch is the root bridge for VLAN 200.
F. BPDUs will be sent out every 10 seconds.
Answer: B F
Explanation
From the output you learn that:
+ This is not the root bridge for VLAN 200 (it does not have the line “This bridge is the root” and the root bridge information is shown first. It has a Alternative port).
+ The root bridge is sending Hello every 10 seconds, Max Age is 20 seconds and Forward Delay is 15 seconds while the local bridge is sending Hello every 2 seconds, Max Age is 20 seconds and Forward Delay is 15 seconds.
Aan IEEE bridge is not concerned about the local configuration of the timers value. The IEEE bridge considers the value of the timers in the BPDU that the bridge receives. Effectively, only a timer that is configured on the root bridge of the STP is important. In this case, the local switch will import STP timers from the root bridge -> The listening state (or learning state) will be 30 seconds, which equals to Forward Delay. Also BPDUs will be sent out every 10 seconds (Hello packets).
(Reference: http://www.cisco.com/en/US/tech/tk389/tk621/technologies_tech_note09186a0080094954.shtml)
While logged into a Company switch you issue the following command:
CompanySwitch(config-mst)#instance 10 vlan 11-12
What does this command accomplish?
A. It enables a PVST+ instance of 10 for vlan 11 and vlan 12
B. It enables vlan 11 and vlan 12 to be part of the MST region 10
C. It maps vlan 11 and vlan 12 to the MST instance of 10.
D. It creates an Internal Spanning Tree (1ST) instance of 10 for vlan 11 and vlan 12
E. It create a Common Spanning Tree (CST) instance of 10 for vlan 11 and vlan 12
F. It starts two instances of MST, one instance for vlan 11 and another instance for vlan 12.
Answer: C
Explanation
MST maps multiple VLANs that have the same traffic flow requirements into the same spanning-tree instance. The main enhancement introduced by MST raises the problem, however, of determining what VLAN is to be associated with what instance. More precisely, based on received BPDUs, devices need to identify these instances and the VLANs that are mapped to the instance.
An example of configuring MST on a switch is shown below:
Configuration Description
Switch(config)# spanning-tree mode mst Turn on MST (and RSTP) on this switch
Switch(config)# spanning-tree mst configuration Enter MST configuration submode
Switch(config-mst)# name certprepare Name MST instance
Switch(config-mst)# revision 5 Set the 16-bit MST revision number. It is not incremented automatically when you commit a new MST configuration.
Switch(config-mst)#instance 1 vlan 5-10 Map instance 1 with respective VLANs (VLAN 5 to 10)
Switch(config-mst)#instance 2 vlan 11-15 Map instance 2 with respective VLANs (VLAN 11 to 15)
Note: To be part of a common MST region, a group of switches must share the same configuration attributes. In particular, the configuration name (or region name – 32 bits), revision number (16 bits), and VLAN mapping (associate VLANs with spanning-tree instances) need to be the same for all the switches within the same region.
By default, all VLANs will belong to which MST instance when using Multiple STP?
A. MST00
B. MST01
C. the last MST instance configured
D. none
Answer: A
Explanation
By default, all VLANs are assigned to MST instance 0. Instance 0 is known as the Internal Spanning-Tree (IST), which is reserved for interacting with other Spanning-Tree Protocols (STPs) and other MST regions.
What will occur when a nonedge switch port that is configured for Rapid Spanning Tree does not receive a BPDU from its neighbor for three consecutive hello time intervals?
A. RSTP information is automatically aged out.
B. The port sends a TCN to the root bridge.
C. The port moves to listening state,
D. The port becomes a normal spanning tree port.
Answer: A
Explanation
In STP 802.1D, a non-root bridge only generates BPDUs when it receives one on the root port. But in RSTP 802.1w, a bridge sends a BPDU with its current information every hello-time seconds (2 by default), even if it does not receive any from the root bridge. Also, on a given port, if hellos are not received three consecutive times, protocol information can be immediately aged out (or if max_age expires). Because of the previously mentioned protocol modification, BPDUs are now used as a keep-alive mechanism between bridges. A bridge considers that it loses connectivity to its direct neighbor root or designated bridge if it misses three BPDUs in a row. This fast aging of the information allows quick failure detection. If a bridge fails to receive BPDUs from a neighbor, it is certain that the connection to that neighbor is lost. This is opposed to 802.1D where the problem might have been anywhere on the path to the root.
(Reference: http://www.cisco.com/en/US/tech/tk389/tk621/technologies_white_paper09186a0080094cfa.shtml)
A port in a redundant topology is currently in the blocking state and is not receiving BPDUs. To ensure that this port does not erroneously transition to the forwarding state, which command should be configured to satisfy the requirement?
A. Switch(config)#spanning-tree loopguard default
B. Switch(config-if)#spanning-tree bpdufilter
C. Switch(config)#udld aggressive
D. Switch(config-if)#spanning-tree bpduguard
Answer: A
Explanation
Loop guard prevents alternate or root ports from becoming the designated port due to a failure that could lead to a unidirectional link. An example is shown below:
STP_loop_guard.jpg
Suppose S1 is the root bridge. S3′s port connected with S2 is currently blocked. Because of unidirectional link failure on the link
between S2 and S3, S3 is not receiving BPDUs from S2.
Without loop guard, the blocking port on S3 will transition to listening (upon max age timer expiration) -> learning -> forwarding state which create a loop.n
With loop guard enabled, the blocking port on S3 will transition into the STP loop-inconsistent state upon expiration of the max age timer. Because a port in the STP loop-inconsistent state will not pass user traffic, no loop is created. The loop-inconsistent state is effectively equal to the blocking state.
To enable loop guard globally use the command spanning-tree loopguard default.
You are the administrator of a switch and currently all host-connected ports are configured with the portfast command. You have received a new directive from your manager that states that, in the future, any host-connected port that receives a BPDU should automatically disable PortFast and begin transmitting BPDUs. Which of the following commands will support this new requirement?
A. Switch(config)# spanning-tree portfast bpduguard default
B. Switch(config-if)# spanning-tree bpduguard enable
C. Switch(config-if)# spanning-tree bpdufilter enable
D. Switch(config)# spanning-tree portfast bpdufilter default
Answer: D
Explanation
The bpdufilter option feature is used to globally enable BPDU filtering on all Port Fast-enabled interfaces and this prevent the switch interfaces connected to end stations from sending or receiving BPDUs.
Note: The spanning-tree portfast bpdufilter default global configuration command can be overridden by the spanning-tree bdpufilter enable command in interface mode.
Which two statements correctly describe characteristics of the PortFast feature? (Choose two)
A. STP will be disabled on the port.
B. PortFast can also be configured on trunk ports.
C. PortFast is required to enable port-based BPDU guard.
D. PortFast is used for both STP and RSTP host ports.
E. PortFast is used for STP-only host ports.
Answer: B D
Explanation
You can use PortFast on switch or trunk ports connected to a single workstation, switch, or server to allow those devices to connect to the network immediately, instead of waiting for the port to transition from the listening and learning states to the forwarding state -> B is correct.
Also, PortFast can be used for both STP and RSTP -> D is correct.
(Reference: http://www.cisco.com/en/US/docs/switches/lan/catalyst4000/7.4/configuration/guide/stp_enha.html)
Answer C is not correct because BPDU guard can be enabled without PortFast. But what will happen if the PortFast and BPDU guard features are configured on the same port?
Well, at the reception of BPDUs, the BPDU guard operation disables the port that has PortFast configured. The BPDU guard transitions the port into errdisable state, and a message appears on the console
2000 May 12 15:13:32 %SPANTREE-2-RX_PORTFAST:Received BPDU on PortFast enable port. Disabling 2/1 2000
May 12 15:13:32 %PAGP-5-PORTFROMSTP:Port 2/1 left bridge port 2/1
(Reference and good resource: http://www.cisco.com/en/US/tech/tk389/tk621/technologies_tech_note09186a008009482f.shtml)
Which of the following commands can be issued without interfering with the operation of loop guard?
A. Switch(config-if)#spanning-tree guard root
B. Switch(config-if)#spanning-tree portfast
C. Switch(config-if)#switchport mode trunk
D. Switch(config-if)#switchport mode access
Answer: C
Explanation
PortFast & Root guard should be placed on ports configured as access ports while loop guard should be placed on trunk ports -> we can use the “switchport mode trunk” without interfering with the operation of loop guard.
Which statement correctly describes enabling BPDU guard on an access port that is also enabled for PortFast?
A. Upon startup, the port transmits 10 BPDUs. If the port receives a BPDU, PortFast and BPDU guard are disabled on that port and it assumes normal STP operation.
B. The access port ignores any received BPDU.
C. If the port receives a BPDU, it is placed into the error-disable state.
D. BPDU guard is only configured globally and the BPDU filter is required for port-level configuration.
Answer: C
Explanation
If any BPDU is received on a port where BPDU guard is enabled, that port is put into the err-disable state immediately. The port is shut down in an error condition and must be either manually re-enabled or automatically recovered through the errdisable timeout function.
Note: A port that has PortFast enabled also has BPDU guard automatically enabled. By combining PortFast & BPDU guard we have a port that can quickly enter the Forwarding state from Blocking state and automatically shut down when receiving BPDUs.
Why is BPDU guard an effective way to prevent an unauthorized rogue switch from altering the spanning-tree topology of a network?
A. BPDU guard can guarantee proper selection of the root bridge.
B. BPDU guard can be utilized along with PortFast to shut down ports when a switch is connected to the port.
C. BPDU guard can be utilized to prevent the switch from transmitteing BPDUs and incorrectly altering the root bridge election.
D. BPDU guard can be used to prevent invalid BPDUs from propagating throughout the network.
Answer: B
Which three statements about STP timers are true? (Choose three)
A. STP timers values (hello, forward delay, max age) are included in each BPDU.
B. A switch is not concerned about its local configuration of the STP timers values. It will only consider the value of the STP timers contained in the BPDU it is receiving.
C. To successfully exchange BPDUs between two switches, their STP timers value (hello, forward delay, max age) must be the same.
D. If any STP timer value (hello, forward delay, max age) needs to be changed, it should at least be changed on the root bridge and backup root bridge.
E. On a switched network with a small network diameter, the STP hello timer can be tuned to a lower value to decrease the load on the switch CPU.
F. The root bridge passes the timer information in BPDUs to all routers in the Layer 3 configuration.
Answer: A B D
Explanation
Each BPDU includes the hello, forward delay, and max age STP timers. An IEEE bridge is not concerned about the local configuration of the timers value. The IEEE bridge considers the value of the timers in the BPDU that the bridge receives. Effectively, only a timer that is configured on the root bridge of the STP is important. If you lose the root, the new root starts to impose its local timer value on the entire network. So, even if you do not need to configure the same timer value in the entire network, you must at least configure any timer changes on the root bridge and on the backup root bridge.
(Reference: http://www.cisco.com/en/US/tech/tk389/tk621/technologies_tech_note09186a0080094954.shtml)
What is the result of entering the command spanning-tree loopguard default?
A. The command enables both loop guard and root guard.
B. The command changes the status of loop guard from the default of disabled to enabled.
C. The command activates loop guard on point-to-multipoint links in the switched network.
D. The command will disable EtherChannel guard.
Answer: B
Explanation
This command is used in global configuration mode to enable loop guard on all ports of a given switch. To disable it, use the “no” keyword at the beginning of this command.
Refer to the exhibit. The service provider wants to ensure that switch S1 is the root switch for its own network and the network of the customer. On which interfaces should root guard be configured to ensure that this happens?
STP_root_guard.jpg
A. interfaces 1 and 2
B. interfaces 1,2,3, and 4
C. interfaces 1, 3, 5, and 6
D. interfaces 5 and 6
E. interfaces 5, 6, 7, and 8
F. interfaces 11 and 12
Answer: D
Explanation
Let’s see what will happen if we set port 5 & 6 as “root guard” ports:
First, notice that the “root guard” command cannot be used on root switch (because this command is based on blocked port – while a root switch can’t have a blocked port -> two middle switches cannot become root bridges.
Moreover, the neighbor switch which has its port connected with this “root guard” port can’t be the root bridge. For example if we configure port 6 as “root guard” port, the left-bottom switch (the switch with ports 3, 4) can’t be root bridge because that will make port 6 root port. Therefore by configuring port 5 & 6 as “root guard” ports, two switches in the “Customer network” cannot become root bridge.
Examine the diagram. A network administrator has recently installed the above switched network using 3550s and would like to control the selection of the root bridge. Which switch should the administrator configure as the root bridge and which configuration command must the administrator enter to accomplish this?
root_bridge_elect.jpg
A. DSW11(config)# spanning-tree vlan 1 priority 4096
B. DSW12(config)# set spanning-tree priority 4096
C. ASW13(config)# spanning-tree vlan 1 priority 4096
D. DSW11(config)# set spanning-tree priority 4096
E. DSW12(config)# spanning-tree vlan 1 priority 4096
F. ASW13(config)# set spanning-tree priority 4096
Answer: E
Explanation
First, only switches in Distribution section should become root bridge -> only DSW11 or DSW12 should be chosen.
The traffic passing root bridge is always higher than other switches so we should choose switch with highest speed connection to be root bridge -> DSW12 with two 100Mbps connections should be chosen.
Also, the correct command to change priority value for a specific VLAN is spanning-treee vlan VLAN-ID priority Priority-number.
What must be the same to make multiple switches part of the same Multiple Spanning Tree (MST)?
A. VLAN instance mapping and revision number
B. VLAN instance mapping and member list
C. VLAN instance mapping, revision number, and member list
D. VLAN instance mapping, revision number, member list, and timers
Answer: A
Explanation
MST maps multiple VLANs that have the same traffic flow requirements into the same spanning-tree instance. The main enhancement introduced by MST raises the problem, however, of determining what VLAN is to be associated with what instance. More precisely, based on received BPDUs, devices need to identify these instances and the VLANs that are mapped to the instance.
To be part of a common MST region, a group of switches must share the same configuration attributes. In particular, the configuration name (or region name – 32 bits), revision number (16 bits), and VLAN mapping (associate VLANs with spanning-tree instances) need to be the same for all the switches within the same region.
An example of configuring MST on a switch is shown below:
Configuration Description
Switch(config)# spanning-tree mode mst Turn on MST (and RSTP) on this switch
Switch(config)# spanning-tree mst configuration Enter MST configuration submode
Switch(config-mst)# name certprepare Name MST instance
Switch(config-mst)# revision 5 Set the 16-bit MST revision number. It is not incremented automatically when you commit a new MST configuration.
Switch(config-mst)#instance 1 vlan 5-10 Map instance with respective VLANs
Switch(config-mst)#instance 2 vlan 11-15
Which three items are configured in MST configuration submode? (Choose three)
A. Region name
B. Configuration revision number
C. VLAN instance map
D. IST STP BPDU hello timer
E. CST instance map
F. PVST+ instance map
Answer: A B C
Explanation
Same as Question 4.
Which three statements about the MST protocol (IEEE 802.1S) are true? (Choose three)
A. To verify the MST configuration, the show pending command can be used in MST configuration mode.
B. When RSTP and MSTP are configured; UplinkFast and BackboneFast must also be enabled.
C. All switches in the same MST region must have the same VLAN-to-instance mapping, but different configuration revision numbers.
D. All switches in an MST region, except distribution layer switches, should have their priority lowered from the default value 32768.
E. An MST region is a group of MST switches that appear as a single virtual bridge to adjacent CST and MST regions.
F. Enabling MST with the “spanning-tree mode mst” global configuration command also enables RSTP.
Answer: A E F
Explanation
The show pending command can be used to verify the MST configuration (pending configuration). An example of this command is shown below:
MST_show_pennding.jpg
Note:
The above commands do these tasks:
+ Enter MST configuration mode
+ Map VLANs 10 to 20 to MST instance 1
+ Name the region certprepare
+ Set the configuration revision to 1
+ Display the pending configuration
+ Apply the changes, and return to global configuration mode
The MST region appears as a single bridge to spanning tree configurations outside the region -> a MST region appears as a single virtual bridge to adjacent CST and MST regions -> E is correct.
By enabling MST you also enable RSTP because MST relies on the RSTP configuration to operate -> F is correct.
Which two statements concerning STP state changes are true? (Choose two)
A. Upon bootup, a port transitions from blocking to forwarding because it assumes itself as root.
B. Upon bootup, a port transitions from blocking to listening because it assumes itself as root.
C. Upon bootup, a port transitions from listening to forwarding because it assumes itself as root.
D. If a forwarding port receives no BPDUs by the max_age time limit, it will transition to listening.
E. If a forwarding port receives an inferior BPDU, it will transition to listening.
F. If a blocked port receives no BPDUs by the max_age time limit, it will transition to listening.
Answer: B F
Which statement correctly describes the Cisco implementation of RSTP?
A. PortFast, UplinkFast, and BackboneFast specific configurations are ignored in Rapid PVST mode.
B. RSTP is enabled globally and uses existing STP configuration.
C. Root and alternative ports transition immediately to the forwarding state.
D. Convergence is improved by using sub-second timers for the blocking, listening, learning, and forwarding port states.
Answer: B
Explanation
To turn on RSTP, use this command in global configuration mode:
Switch(config)# spanning-tree mode mst
Note: This command turn on both MST & RSTP.
The network administrator maps VLAN 10 through 20 to MST instance 2. How will this information be propagated to all appropriate switches?
A. Information will be carried in the RSTP BPDUs.
B. It will be propagated in VTP updates.
C. Information stored in the Forwarding Information Base and the switch will reply on query.
D. Multiple Spanning Tree must be manually configured on the appropriate switches.
Answer: D