stats base Flashcards
pdf transformation
Y=g(X) X=g-1(Y), fy=fx(g-1(Y) |d/dy g-1(Y)
exp transformation
Y=g(X) X=g-1(Y), EY= int g(X) fx imp for moments!
variance aX+bY
a^2varX+b^2varY+ 2abCov
CovXY
E(XY)-EY*EX
moment gen function
int e^(tx)f(x) t=moment?
Marginal densities and conditional and conditional expecation
fx=int f(x,y) dy
fx|y = f(x,y)/fy
eY|x=x = int y*fY|X
E(XY)
int int f(x,y)xy
Correlation
cov/(sqrt(varX*varY)
Chi2 how get
sum of standard normals squared
Sum of 2 chi squares
chi square n+m if indep
2X/theta X exponential and with sum
Chi squared 2, 2n
Exp and variance chi squared
n, 2n
t how get
Z/sqrt(Chi/deg) = t deg of chi
F how get and deg
ratio chi_m/deg / chi_n/deg deg m, n
t^2
F 1,n
Distribution Xbar from normal
N(mu, sigma/n)
(n-1)S^2/sigma^2
chi n-1
Xbar-mu/(S/sqrt(n))
t n-1
CLT
Xbar-mu/sigma/(sqrt n) tends to Z
Sum of squared integers
n(n+1)(2n+1)/6
Gamma function
F(n) = (n-1)!
Var(sumX)
sum Var(x)
pdf max
n(x^n-1)/theta^n