micro Flashcards
normal etc good
derivative wealth <0 inferiorio 0-1 normal 1+ luxury
giffen good
own price derivative positive
elasticity
dx/dw*w/x
hicksian comp
e(p’, u0) - w
sluts comp
p’*x(p, w) - w
Roy
x = - grad(p)/grad(w) of v(p, w)
Shephard’s lemma
h= grap(p) e(p, u)
EV
e(p0, u1) - w
v(p0, w+EV)=u1
CV or wtp
w - e(p1, u0)
v(p1, w-CV)=u0
CV >< EV
Normal EV>CV
inferior EV<CV
Hotelling lemma
y(p) = grad(p) pi(p)
Shephard’s lemma production
z=grad(w) c
cond factor demand corresp, cost function
certainty equivalent
u(CE)=u(x) CE \sim x
int u(x) dF(x)
Risk and shape of u
averse u concave (u’‘<0)
neutral linear
lover convex
Absolute risk av
-u’‘(x)/u’(x)
Cara
1-exp(-Rx) / R
crra
x^(1-r)/1-r
proof WL assumptions and steps
LNS p»0
LNS = spend entire wealth
market good 1 clears
sum across individuals = 0
P>0 so sum X2 - w2 = 0
Utility poss convex
Assume convex prod and cons + concave ut
need feasible and ui<u(x) for all i
take (x,y) (x’,y’) feasible. (x’‘,y’’) lincomb feasible
u(x’’)>=lincomb(u(x) u(x’)) by concavity for all i. done
WE z<0
WE p>=0 (with strong monotonicity =, also z=0) iff
-y<0, py=0
-xi=xi(p, pw) for all i
-sum xi - sum wi= yi*
=> follow from i, iii
<= take xi=xi(p, pw), y=sum(xi-wi)
py=sum(px-pw)=0 bc by LNS pw=px
Existance
P»0. By H0, can price unit simplex. sum p = 1
zl+(p) = Max (zl(p), 0)
alpha(p)= sum(pl+zl+(p))
f(p)= 1/alpha(p) * (p + zl+(p))
Brower fixed point E p=f(p)
WL pz(p)=0
Warp multivalued
(p, w) (p’, w’) x in x(p,w) x’ in x(p’, w’)
p’x<w’ x in x
px’<w x’ in x
Probability premium
take middle point ex 16 4 is 10
u(10)=(1/2-p)u(4) + (1/2+p)u(16) (–, ++)
SODS
F sods G if integral 0-x F-G dt <0 for all x in range
elasticity of subs
1/1-p (x^p+y^p)^1/p p neg inf leont, inf subs, 1 cobb
WA
p z(p) diff and pz(p’)<=0 implies p’z(p)>0
Necessity WA
esistono 2, buttali in Y* come py<=0 p’y<=0 e ce l’hai xk eq prices but different z
Sufficiency WA
Take 2 eq. Lincom p’‘y<0 easy
WL pz(p’’) or p’ negative <=
Suppose one. But z(p) in Y implies p’‘z(p)<=0
Can WA only if z=z. So 3 demands same prices multiples H0
WE in crs
(p, x(p, pw), y(p)=z(p)
py<=0 for all y necessary in PMP
z(p) in Y feasible from market clearing
py*(p)=pz(p)=0 WL maximize profits
PMP py
for all y in Y, py*>=py
Sum of x* in F/STWE
sumpx=sumw=pw+sum py*
w+sum y*