Statistik Flashcards

1
Q

Hvad forstår man ved præanalytisk variation?

A

Præanalytisk variation refererer til de fejl eller variationer, der kan opstå før selve analysen af en prøve, såsom ved indsamling, transport, opbevaring eller håndtering af prøven.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Hvornår i prøvens vej starter den præanalytiske variation?

A

Den præanalytiske variation starter fra det øjeblik, prøven tages (f.eks. blodprøveudtagning) og kan fortsætte under transport, opbevaring og indtil prøven analyseres i laboratoriet.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Hvor stor er den præanalytiske variation ofte i forhold til de øvrige usikkerhedsfaktorer?

A

Den præanalytiske variation udgør ofte en betydelig del af den samlede variation, typisk større end både den analytiske og postanalytiske variation.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Hvad forstår man ved analytisk variation?

A

Analytisk variation er den usikkerhed eller fejl, der opstår under selve analysen af prøven, forårsaget af laboratorieinstrumenter, metoder eller operatører.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Hvordan fastlægger man i praksis størrelsen af den analytiske variation?

A

Størrelsen fastlægges ved at gentage analyser på samme prøve under de samme betingelser og beregne variationen, f.eks. ved hjælp af standardafvigelse (SD) eller variationskoefficient (CV).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Hvilket grafisk redskab bruges til kontinuerligt at visualisere den analytiske variation?

A

Kontrolkort bruges ofte til at overvåge og visualisere den analytiske variation over tid.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Hvad forstår man ved postanalytisk variation?

A

Postanalytisk variation er variationer, der opstår efter analysen, såsom ved rapportering, tolkning eller kommunikation af resultater.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Hvordan kan postanalytisk variation opstå?

A

Det kan opstå ved menneskelige fejl i indtastning, forkert fortolkning af resultater eller manglende overensstemmelse mellem laboratorieresultater og kliniske beslutninger.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Hvad karakteriserer tilfældig variation?

A

Tilfældig variation opstår uden mønster og er uforudsigelig. Den skyldes ofte naturlige udsving i prøver eller måleinstrumenter.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Hvilke to parametre bruges til at kvantificere den tilfældige variation?

A

Standardafvigelse (SD) og variationskoefficient (CV) bruges typisk til at kvantificere tilfældig variation.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Hvad karakteriserer systematisk variation?

A

Systematisk variation er forudsigelig og skyldes ofte en konstant fejl, som f.eks. en forkert kalibrering af måleinstrumentet.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Hvilken parameter bruges til at kvantificere den tilfældige variation?

A

Bias bruges til at kvantificere systematisk variation.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Hvad bruges Westgaard-regler til?

A

Westgard-regler bruges til kvalitetskontrol i laboratorier for at vurdere, om resultaterne fra en analyse er valide, og om der er behov for at stoppe og undersøge potentielle fejl i analysen.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Nævn mindst 4 Westgaard-overtrædelser

A
  • 1_3s: En måling er uden for ±3 SD.
  • 2_2s: To på hinanden følgende
    målinger er uden for ±2 SD på
    samme side af middelværdien.
  • R_4s: Forskellen mellem to på
    hinanden følgende målinger
    overstiger 4 SD.
  • 4_1s: Fire på hinanden følgende
    målinger er uden for ±1 SD på
    samme side af middelværdien.
  • 10x: Ti på hinanden følgende
    målinger ligger på samme side af
    middelværdien.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Hvad menes der med en analyses repeterbarhed?
Hvordan fastlægges den?

A

Repeterbarhed er en analyses evne til at give samme resultat, når den udføres gentagne gange under de samme betingelser.
Den fastlægges ved at udføre gentagne målinger på samme prøve og beregne variationen, f.eks. som standardafvigelse (SD) eller variationskoefficient (CV).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Hvad menes der med en analyses intermediære præcision?
Hvordan fastlægges den?

A

Intermediær præcision er en vurdering af variationen i en analyse, når målinger foretages over længere tid, med forskellige operatører, instrumenter eller reagenser.
Den fastlægges ved at udføre målinger over flere dage med forskellige operatører og instrumenter og beregne den samlede variation.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Hvad er årsagerne til biologisk variation?

A

Biologisk variation kan skyldes faktorer som genetiske forskelle, fysiologiske ændringer, alder, køn, kostvaner, døgnvariationer, og sygdomstilstande.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Hvordan skal man rent statistisk tage højde for, at der er biologisk variation? (Gerne flere eksempler)

A

Ved at beregne biologisk referenceinterval baseret på en stor population.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Hvorhenne i litteraturen kan man finde ud af, hvor stor biologisk variation, der er på forskellige analytter?

A

Biologisk variation kan findes i databaser som EFLM Biological Variation Database

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Hvilken form for usikkerhed er udtryk ved bias?

A

Bias repræsenterer systematisk usikkerhed
(Det er forskellen mellem den sande værdi og gennemsnittet af de gentagne målinger)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

Hvordan ses bias på et differensplot?

A

Bias ses som en forskydning væk fra nul-linjen i differensplottet.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

Hvordan beregnes bias?

A

Bias = målt værdi - sand værdi

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

Hvordan beregnes relativt bias i procent?

A

Relativ Bias% =
(målt værdi - sand værdi)/ sand værdi x 100%

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

Hvilken form for usikkerhed er udtryk ved CV?

A

CV udtrykker relativ usikkerhed.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Q

Hvordan beregnes CV?

A

CV = (SD/middelværdi)x100%

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
26
Q

Hvorfor har man brug for at forholde sig til betydende cifre?

A

Man forholder sig til betydende cifre for at sikre, at resultaterne af beregninger ikke præsenteres med en præcision, der overstiger den faktiske nøjagtighed af de anvendte data.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
27
Q

Hvilke regler bruger man til at fastsætte antallet af betydende cifre?

A
  • Ikke-nul cifre er altid betydende (fx
    123 har tre betydende cifre).
  • Nuller mellem ikke-nul cifre er
    betydende (fx 1002 har fire
    betydende cifre).
  • Indledende nuller (før de første
    ikke-nul cifre) er ikke betydende (fx
    0,0025 har to betydende cifre).
  • Sluttende nuller efter
    decimaltegnet er betydende (fx
    2,00 har tre betydende cifre).
  • Sluttende nuller uden
    decimalpunkt anses normalt som
    ikke betydende, medmindre andet
    er specificeret (fx 100 kan have én,
    to eller tre betydende cifre
    afhængigt af konteksten).
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
28
Q

Hvad er reglerne for addition/subtraktion?

A

Ved addition og subtraktion er resultatets præcision bestemt af det mindst præcise antal decimaler i de anvendte tal.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
29
Q

Hvad er reglerne for multiplikation/division?

A

Ved multiplikation og division er resultatet begrænset af det mindste antal betydende cifre i de anvendte tal.

30
Q

Hvorhenne I bioanalytikerprofessionen bruger man typisk differensplot?

A
  • Sammenligning af to metoder til
    måling af den samme analyt, for at
    vurdere, om de to metoder giver
    sammenlignelige resultater.
  • Identifikation af systematiske bias
    (forskelle) mellem metoder.
  • Evaluering af målenøjagtighed og
    reproducerbarhed i
    laboratorieanalyser.
  • Kvalitetssikring, især ved validering
    af nye analysemetoder.
31
Q

Hvordan tolker man et differensplot?

A

Bias:
Gennemsnittet af differenserne
(den centrale linje) viser
systematisk bias mellem de to
metoder.
Hvis gennemsnittet er tæt på 0, er
der ingen systematisk forskel.
Spredning:
95%-grænserne viser, hvor meget
målingerne typisk afviger fra
hinanden. Smalle grænser
indikerer høj enighed.
Fordeling af punkter:
Hvis punkterne er jævnt fordelt
uden tydelige mønstre, indikerer
det, at forskellen er tilfældig og
ikke afhænger af analyttens
koncentration.

32
Q

Hvad forstår man ved et relativt differensplot?

A

I et relativt differensplot sammenlignes ikke de absolutte differenser, men de relative differenser i procent. Relativ differens bruges ofte, når forskellene skal sættes i forhold til analyttens koncentration, hvilket er nyttigt ved analyser med meget varierende koncentrationer.

33
Q

Hvad er fordelene ved et relativt differensplot?

A

Når analyttens værdier varierer meget, kan et relativt differensplot afsløre mønstre, som et absolut differensplot ikke viser.

34
Q

Hvad karakteriserer en normalfordeling?

A

En klokkeformet kurve: Symmetrisk omkring middelværdien. Flest observationer er tæt på middelværdien, mens færre ligger langt væk (i halerne).

35
Q

Hvilke to parametre definerer den?

A

Middelværdi (μ): Angiver, hvor
fordelingen er centreret.
Standardafvigelse (σ): Angiver
spredningen; en lille σ betyder, at
data er tæt samlet, mens en stor σ
betyder, at data er mere spredt.

36
Q

Hvor ser vi den I bioanalytikerfeltet?

A

Laboratorieanalyser:
Analyseresultater som gentagne
målinger af samme prøve følger
ofte normalfordelingen.
Kvalitetskontrol: Bruges til at
vurdere præcision og variation i
målinger.
Hypotesetest: Statistiske analyser i
forskningsprojekter antager ofte
normalfordeling af data.

37
Q

Hvorfor har man i forskning brug for at angive et konfidens-interval?

A

Konfidensintervallet giver en vurdering af usikkerheden omkring en stikprøves estimat af en populationsparameter (f.eks. middelværdi). Det gør det muligt at udtrykke, hvor sikre vi kan være på, at den “sande værdi” ligger inden for intervallet.

38
Q

Hvordan skal et konfidens-interval tolkes?

A

Hvis vi f.eks. har et 95% konfidensinterval, betyder det, at vi med 95% sikkerhed forventer, at populationsparameteren ligger inden for dette interval, hvis stikprøven gentages mange gange.

39
Q

Hvilken betydning har stikprøvens størrelse på konfidens-intervallets bredde?

A

Større stikprøver giver smallere konfidensintervaller, da estimatet bliver mere præcist.

40
Q

Hvilken betydning har stikprøvens SD på konfidens-intervallets størrelse?

A

En større standardafvigelse giver bredere konfidensintervaller, fordi der er mere variation i data, hvilket øger usikkerheden omkring estimatet.

41
Q

Hvad er forudsætningerne for, at man må beregne et konfidens-interval?

A

Normalfordelte data, tilstrækkelig stikprøvestørrelse og at dataene er uafhængige af hinanden.

42
Q

Hvorhenne i bioanalytikerprofessionen bruger man typisk xy-plot?

A

XY-plot bruges f.eks. til at vurdere korrelationen mellem to analysemetoder.

43
Q

Hvilken betydning har tendenslinjens hældning og skæring her?

A

Hældning: Hældningen viser,
hvordan de to variabler hænger
sammen. En hældning på 1
betyder perfekt proportionalitet
mellem variablerne.
Skæring: Skæringspunktet på y-
aksen angiver, hvor linjen krydser,
når x=0. En skæring på 0 indikerer
ingen systematisk forskel.
R²-værdi: Viser, hvor godt dataene
passer til tendenslinjen. En R² tæt
på 1 indikerer en stærk
korrelation.

44
Q

Hvordan tolker man R2?

A

En R² tæt på 1 indikerer en stærk korrelation.

45
Q

Hvilken datafordeling kan give misvisende høj R2?

A

Data med outliers eller ikke-lineære sammenhænge kan give et misvisende højt R2, fordi det ikke tager højde for, om modellen er passende.
Eller hvis data ikke repræsenterer hele måleområdet.

46
Q

Hvad er en outlier?

A

En outlier er en observation, der ligger langt væk fra resten af datasættet og afviger markant fra de øvrige data.

47
Q

Hvordan kan man objektivt udpege en outlier?

A

Ved brug af metoder som z-score eller visuelle metoder som boxplots.

48
Q

Hvad må man gøre, hvis der er en outlier i sit datasæt?

A

Afhængigt af analysens formål kan man:
- Beholde outlieren, hvis den er
relevant.
- Fjerne den, hvis det kan
dokumenteres, at den skyldes fejl.
- Anvende robuste metoder, der er
mindre følsomme for outliers.

49
Q

Hvad mener man med en hypotese?

A

En antagelse om en populationsparameter, der kan testes statistisk.

50
Q

Hvilken hypotese er det, man oftest afprøver i sine statistiske tests?

A

Nulhypotesen (H0), der typisk antager, at der ikke er en effekt eller sammenhæng.

51
Q

Hvad forstår man ved en population?

A

Hele gruppen af individer eller enheder, man ønsker at sige noget om i sin undersøgelse

52
Q

Hvad forstår man ved en stikprøve?

A

En lille del af populationen, som bruges til at lave estimater om populationen.

53
Q

Hvad bruger man stikprøven til at estimere?

A

Populationens parametre, fx middelværdi, varians eller proportioner.

54
Q

Hvorfor er H0 vigtig og hvornår accepteres den?

A

Den danner grundlaget for hypotesetesten og repræsenterer udgangspunktet. Den accepteres når der ikke er tilstrækkelig evidens til at afvise den ud fra den valgte signifikansniveau. (oftest 0,05)

55
Q

Hvad forstår man ved H1?

A

Alternativhypotesen, der modsiger nulhypotesen og ofte antager, at der er en effekt eller sammenhæng.

56
Q

Hvilken betydning har H1 for udførelsen af mange statistiske tests?

A

Den bestemmer retningen og typen af testen (enhalet eller tohalet).

57
Q

Hvornår accepteres den?

A

Når nulhypotesen kan afvises med en p-værdi mindre end signifikansniveauet.

58
Q

Hvad er P-værdien udtryk for i populært sprog?

A

En P-værdi er en statistisk indikator for hvor sandsynligt et given resultat kunne være opnået tilfældigt.

59
Q

Hvad er den mere eksakte definition af P-værdien?

A

Sandsynligheden for at observere en teststatistik, der er mindst så ekstrem som den beregnede, givet at H0 er sand.

60
Q

Hvad er signifikansniveauet udtryk for?

A

Sandsynligheden for at begå en type 1 fejl (forkaste en sand nulhypotese).

61
Q

Hvad er den typiske størrelse af signifikansniveauet?

A

Typisk 0,05 (5%).

62
Q

Hvad er symbolet for signifikansniveau?

A

α. (alfa)

63
Q

Hvad mener man med, at der er vist en signifikant forskel på population A og B?

A

At forskellen er så stor, at det er usandsynligt, den skyldes tilfældigheder (ifølge signifikansniveauet).

64
Q

Hvordan kan man se, om man i hypotesetests skal bruge en enhalet eller en tohalet test?

A
  • Enhalet: Når hypotesen går på en
    specifik retning (fx “større end”).
  • Tohalet: Når hypotesen tester
    begge retninger (fx “forskel uanset
    retning”).
65
Q

Hvorhenne i udførelsen af testen har man brug for at vide det?

A

Når man opstiller hypoteserne og beregner p-værdien.

66
Q

Hvad forstår man ved en type 1 fejl?

A

At man forkaster en sand nulhypotese.

67
Q

Hvad er sammenhængen med det valgte signifikansniveau?

A

Signifikansniveauet (αα) angiver sandsynligheden for at begå en type 1 fejl.

68
Q

Hvad forstår man ved en type 2 fejl?

A

At man ikke forkaster en falsk nulhypotese.

69
Q

Hvad mener man med parametriske tests?

A

Statistiske tests, der antager, at data følger en bestemt fordeling (typisk normalfordeling).

70
Q

Hvilke parametriske tests kender du?

A

T-test
ANOVA

71
Q

Hvad forstår man ved kategoriske data?

A

Data, der falder i kategorier og ikke har en naturlig numerisk værdi (fx køn, farve).

72
Q

Hvilke undergrupper er der?

A

Nominal data: Uden rangorden (fx øjenfarve).
Ordinal data: Med rangorden (fx uddannelsesniveau).