Stat & Thm Flashcards
1
Q
Sample Mean (x̄)
A
Sn/n = ∑Xi/n, i = 1,…,n
2
Q
Sample Variance (S²)
A
(∑Xi - x̄)²/(n-1), i = 1,…,n
3
Q
rth sample raw moments (M_r’)
A
∑Xi^r/n, i = 1,…,n, ∀r = 1,2,3,…
4
Q
sample central moment (M_r)
A
(∑Xi - x̄)^r/n, i = 1,…,n, ∀r = 1,2,3,…
5
Q
order stat
A
X_(1) ≤ X_(2) ≤ … ≤ X_(n)
6
Q
Let x̄ = (X1, X2,…,Xn)’ be a r.s. fr Fx, then ∀r = 1,2,3,… E(Mr’) & V(Mr’)
A
E(Mr’) = E(X^r) = μ^r if E(X^r) exists
V(Mr’) = {E[X^2r] - [E(X^r)]^2}/n
7
Q
Let x̄ = (X1, X2,…,Xn)’ be a r.s. fr Fx with μ & σ² (Exp & Var of Sample Var)
A
E(S²) = σ²
V(S²) = [μ_4 - {(n-3)σ^4/n-1}]/n
8
Q
∑(Xi - x̄)²
A
∑(Xi - μ)² - n(x̄ - μ)²
9
Q
∑(Xi - μ)²
A
∑(Xi - x̄)² + n(x̄ - μ)²