Special Results Flashcards
Let X1, X2,...,Xn be n ind't variables
1
Q
Xi ~ Bi(mi, p) ∀i = 1,2,…,n
A
Sn ~ Bi(∑mi, p)
Sn ~ Bi(nm, p) if mi = m ∀i
2
Q
Xi ~ NB(ri, p) ∀i = 1,2,…,n
A
Sn ~ NB(∑ri, p)
Sn ~ NB(nr, p) if ri = r ∀i
3
Q
Xi ~ Po(λi) ∀i = 1,2,…,n
A
Sn ~ Po(∑λi)
Sn ~ Po(nλ) if λi = λ ∀i
4
Q
Xi ~ Ga(ri, λ) ∀i = 1,2,…,n
A
Sn ~ Ga(∑ri, λ)
Sn ~ Ga(nr, λ) if ri = r ∀i
5
Q
Xi ~ N(μi, σi²) ∀i = 1,2,…,n
A
Sn ~ N(∑aiμi, ∑ai²σi²)
Sn ~ N(nμ, nσ²) if μi = μ, σi² = σ ∀i
6
Q
Xi ~ N(μi, σi²) ∀i = 1,2,…,n
reproductive family
A
∑aiXi ~ N(∑aiμi, ∑ai²σi²), a is a constant
7
Q
Xi ~ Exp(λ) ∀i = 1,2,…,n
A
Sn ~ Ga(n,λ)
9
Q
Xi ~ Ga(1, λ) ∀i = 1,2,…,n
A
Sn ~ Ga(n,λ)
10
Q
X ~ N(μ, σ²)
standardizing
A
[X - N]/σ ~ N(0,1)