Solid Machenics /SOM Flashcards
1
Q
Principal Stress in form of strain and Elastic modulus
A
Stress= E *(ε1+u.ε2) /(1-u^2)
2
Q
Different Theories of failure
A
- Max principal Stress (Rankine theory)
σ_max<=σy - Maximum principal strain (St. Venant’s theory)
[σ1 -u.(σ2+σ2)]/E <= σy - Maximum shear stress (Guest and Tresca’s theory)
tau_max <= σy/2 - Maximum strain energy (haigh’s theory)
σ1^2 +σ2^2 +σ3^2 - 2u.(σ1.σ2+σ2.σ3+σ1.σ3) < σy^2 - Maximum strain/distortion energy (Mises -Henky theory)
(1/2)*[(σ1-σ2)^2 +(σ2-σ3)^2 +(σ3-σ1)^2] < σy^2
3
Q
Stress at a point in terms of angle and coordinate stresses
A
σ= σx. Cosθ^2 +σy. Sinθ^2 + tau. Sin2θ tan(2θ) = 2*tau/(σx - σy)
4
Q
principal stress in terms of Torque and Moment
A
σ = (16/π.D^3) * [M +- sqrt(M^2 +T^2)]
5
Q
Angle of neutral axis for lateral and virtical loaded beam
A
Tan(c) = Mh. Iv / Mv. Ih