Simultaneous Equations Flashcards
0
Q
Yr 8 example:
x + 5y = 11
x + 4y = 10
A
Subtract Y = 1 Substitute x + (5 x 1) = 11 x = 6
1
Q
Yr 8 example:
Solve
2x + y = 21
x - y = 6
A
Add them up in order to get rid of one of the letters 3x = 27 x = 9 Substitute 9-y = 6 y = 3
2
Q
Yr 9 example:
3x + 2y = 16
2x + y = 9
Times the second one by two
A
3x + 2y = 16 4x + 2y = 9 Subtract x = 2 Substitute 4 + y = 9 y = 5
3
Q
Yr 9 example: Solve 2x + 5y = 16 3x + 4y = 17 Times both by three
A
6x + 15y = 48 6x + 8y = 34 Subtract 7y = 14 y = 2 Substitute 2x + 10 = 16 2x = 6 x = 3
4
Q
The substitution method
y = 6x -1
y = 4x + 15
A
4x + 15 = 6x - 1 16 = 2x x = 8 Substitute into any of the original equations y = 32 + 15 y = 47
5
Q
Substitution method
y = 8 - 2x
3x - 2y = 5
A
3x - 2(8 - 2x) = 5 3x - 16 + 4x = 5 7x = 21 x = 3 Substitute y = 8 - (2 x 3) y = 8 - 6 y = 2
6
Q
Substitution method 3x - 4y = 1 y - 2x = 1 Rearrange 3x - 4y = 1 y = 1 + 2x
A
3x - 4(1 + 2x) = 1 3x - 4 - 8x = 1 -5x - 4 = 1 -5x = 5 -x = 1 x = -1 Substitute y - 2 (-1) = 1 y + 2 = 1 y = -1
7
Q
Quadratic simultaneous equation
Find the intersection of
The curve: y = x(sq) + 2x - 4
And the line = x + 2
A
1) substitute x + 2 = x(sq) + 2x - 4 2) simplify 0 = x(sq) + 2x - 4 - x - 2 0 = x(sq) + x - 6 3) solve the quadratic (factorise) 0 = x(sq) + x - 6 0 = (x + 3) (x - 2) x = -3 / x = 2 << first answer 4) substitute the x value to get the y value y = x + 2 << the easier equation FINAL ANSWER: x = -3 / x = 2 y = -1 / y = 4