RSA Flashcards

1
Q

RSA Ablauf

A

1.Wähle Primzahlen q,e
2.Berechne n = p * q
3. Berechne phi(n)=(p-1)(q-1)
4. Wähle e mit e in {1, phi(n) - 1}, so dass e und phi(n) rel. prim
5. Berechne privaten Key d, sodass e * d = 1 mod phi(n)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Beweis RSA:

A

de = 1 + t * phi(n)
d_kpr(y) = x^(de) = x^(1 + t
phi(n)) = x * x^(phi(n))^t mod n
Nach Eulers Theorem gilt x^(phi(n)) = 1 mod n

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Speed Up für RSA:

A

1.Wählen von kleinem Public key
2. Entschlüsseln mit CRT

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Angriffe:

A

Protokoll: Irrelevant
Mathematisch: Faktorisieren von n
Side-Channel.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly