Rotational (Microwave) Spectroscopy Flashcards
Rotation of molecules?
3 axes of rotation, movement of inertia (I) defines energy of rotation
Ia = Ib, Ic about the molecular axis is very small
Energy of rotation depends on?
Mass of atoms
Distance between atoms
Angular velocity
Selection rules for rotational spectroscopy?
In order to interact with EM radiation, the molecule must possess an electric dipole which can oscillate at the frequency of the radiation – also called a transition moment
Gross selection rule?
Molecules must possess a permanent dipole, only heteronuclear diatomics give a pure rotational spectrum
Specific selection rule?
Only transitions between adjacent energy levels can occur DeltaJ ± 1
Expression for rotational energies?
EJ = BJ(J+1)
Lower reduced mass?
A lower reduced mass will give a larger rotational constant, Thus,H2 ,whichhasthe lowest reduced mass of any molecule, will have a large rotational constant
High reduced mass or large r?
Molecules with a high reduced mass, or large r have small B constants, rotational levels are not resolved for very large molecules because they are so close together in energy
Absorption spectroscopy?
Spectroscopy looks at transitions, we know the energies and the selection rules, we can predict what the spectrum will look like, absorption occurs when the photon energy matches the difference between energy levels
Line spacing in rotational (microwave) spectroscopy?
The levels get further apart as J increases, the spectrum therefore consists of a series of equally spaced lines – separation is 2B, measuring B from the spectrum –> calculate the moment of inertia,
knowing m1 and m2 –> calculate the bond length
Why are not all the intensities of the lines the same?
We have to look at the occupancy of the levels, need to look at the population and degeneracy
What is degeneracy?
Degeneracy – number of levels with exactly the same energy
What does the intensity of the absorption peak depend on?
The intensity of the absorption peak depends on the number of molecules that absorb the radiation i.e. the number in the energy level – the population, usually fewer molecules
in higher energy states, more likely to have higher E states populated if deltaE is small
Trends in Boltzmann distribution?
As exponential term tends to 0 where n upper = n lower, change in energy is very small or T is very large
If exponential term is large, the negative sign means n upper «_space;n lower, change in energy is very large or T is very small
Boltzmann and populations at higher temperature?
At higher temperatures, there is higher population of higher levels
Boltzmann and populations when change in energy is large?
If change in energy is large, only the lowest energy levels will have significant populations