Risk Management and Derivatives Flashcards
Risk Goverance
Two Types:
Decentralized - each unit is responsible
Centralized (aka ERM) - one central unit is responsible
Allows overview
Economies of scale
Enterprise Risk Management (ERM) Evaluation
Goal: Identify and take profitable risks
- Aggregates risks
- Considers correlation
- Serious commitment and expense
Market and Financial Risk Factors
Market Risks (manage by derivatives)
- Interest rates
- Exchange rates
- Equity prices
- Commodity prices
Financial Risk
- Credit risk
- Liquidity risk
Nonfinancial Risk Factors
Non-Financial Risks (manage by insurance)
- Operational - computer, human, or weather events
- Settlement (Hersatt)- other party fails to pay
- Model
- Sovereign
- Regulatory
- Tax, accounting and legal
Value at Risk (VaR)
Analytical Method
Also called variance-covariance method
Formula: [Rp - (z)(std)] * Vp
Know the following for z:
5% = 1.65 2.5% = 1.96 1% = 2.33 0.5% = 2.58
Example: Calculate 5% annual VaR for 150M
R = 9.55, std =14.87
9.55 - 1.65(14.87) = -14.99%
.1499 * 150M = 22.49M loss
Value at Risk (VaR)
Analytical Method - Monthly/Weekly
Formula: [Rp - (z)(std)] * Vp
To compute weekly:
Rp = Rp / 52
std = std / √52
To compute monthly:
Rp = Rp / 12
std = std / √12
Example: Calculate 5% weekly VaR for 150M
R = 9.55, std =14.87
(9.55 / 52) - 1.65(14.87 / √52) = -3.22%
.0322 * 150M = 4.83M weekly loss
Value at Risk (VaR)
Analytical Method - Disadvantages
- Some returns, like options, are skewed (assumes normal)
- Market distributions have fat tails (leptokurtosis)
- Std hard to estimate for large portfolios
Value at Risk (VaR)
Historical Method
Rank all returns from lowest to highest and identify the % you need
Advantages: reflects past distributions
nonparametric
Disadvantage: assumes historical returns will will repeat
Example: 100 daily returns, the 5 lowest are:
-.0019, -.0025, -.0034, -.0096, -.0101
Calculate daily VaR at 5%
5th lowest -.0019. Means a 5% chance of daily loss exceeding 0.19%.
Value at Risk (VaR)
Monte Carlo
Similar to Historical, ranks outcomes.
Advantages
- Can customize (normal distribution for some assets, skewed for others, etc.)
VaR Extentions
- Incremental VaR
- Tail Value at Risk (TVaR) - average value in the 5% tail
- Looks at whole tail (even past VaR)
- Cash Flow at Risk (CFAR)
- Earnings at Risk (EAR)
Credit Risk and Credit Risk VaR (CVaR)
Credit Risk Loss depends on:
Probability of default
Amount that can be recovered
CVaR estimates loss due to credit events
Types of Stress Testing
Complement to VaR
- Factor Push: puts factors at worst combination
- Maximum loss optimization: models the worst combination of factors
- Worst-case scenario
Forward Contract
Value of Credit Risk (Currency)
value to long = St / (1 + Rforeign)t - F0 / (1 + Rdomestic)t
Positive = long credit risk Negative = seller credit risk
F = foreign (must be BASE)
Example: US enters 2-yr forward, purchase = 10,000 EUR at USD 0.90
6 months later: Spot = .862/EUR. 1.5 yr rates: US 6%, EUR 5%
Calculate potential credit risk
.862 / (1.05)1.5 - 0.90 / (1.06)1.5 = -0.0235
Long is losing. NO credit risk
Seller is winning, has credit risk of 10,000 EUR * 0.235 = $235
Forward/Swaps/Options/Futures Credit Risk
Forward: only change hands at end. Party winning has risk. Highest risk near the end
Swaps: credit risk at each swap date. Highest risk in the middle
Options: only long positions faces credit risk
Futures: No credit risk
Option Credit Risk
Currrent credit risk: only at exercise
Potential credit risk: positive market value of the option
Example:
Dealer sold a call option, X = $35, value = $46
Current credit risk: none
Potential credit risk: None for dealer, $46 per share for buyer
Managing Market Risk
VaR manager example
VaR is not additive because it considers correlation
Example A B
Capital $100,000,000 $500,00,000
VaR $5,000,000 $10,000,000
Profit $1,000,000 $3,000,000
Return on Capital 1% 0.6%
Return on VaR 20% 30%
RoC has A winning, but RoVaR has B winning
Risk Budgeting
Determining where and how much risk to take through ERM
Types: (not important)
- VaR limits
- Liquidity limits
- Performance stop loss
- Risk factor limits
- Scenario analysis limits
- Leverage limits
How to Manage Credit Risk
- Collateral
- Credit default swap/forward
- Mark to market - settle contract now to reprice
- Minimum credit standards
- Limit exposure (position, loss, factors, VaR, leverage, liquidity)
Sharpe Ratio vs Sortino
Sharpe
Rp - Rf / stdp
Assumes normal distribution (no skew)
Sortino (use if std is inflated)
Rp - MAR / stddownside
Only downside being considered
Risk-Adjusted ROC
RAROC = Rp / capital at risk
capital at risk = VaR, etc.
Return over Maximum Drawdown (RoMAD)
RoMAD = Rp / maximum drawdown
maximum drawdown = largest historical % decline from high to low