Review: sampling Dist Flashcards
The use of the finite population correction factor, when sampling without replacement from
finite populations, will
a) increase the standard error of the mean.
b) not affect the standard error of the mean.
c) reduce the standard error of the mean.
d) only affect the proportion, not the mean.
c
For sample size 16, the sampling distribution of the mean will be approximately normally
distributed
a) regardless of the shape of the population.
b) if the shape of the population is symmetrical.
c) if the sample standard deviation is known.
d) if the sample is normally distributed.
b
The standard error of the mean for a sample of 100 is 30. In order to cut the standard error of the mean to 15, we would a) increase the sample size to 200. b) increase the sample size to 400. c) decrease the sample size to 50. d) decrease the sample to 25.
b
Which of the following is true regarding the sampling distribution of the mean for a large sample
size?
a) It has the same shape, mean, and standard deviation as the population.
b) It has a normal distribution with the same mean and standard deviation as the population.
c) It has the same shape and mean as the population, but has a smaller standard deviation.
d) It has a normal distribution with the same mean as the population but with a smaller
standard deviation.
d
For sample sizes greater than 30, the sampling distribution of the mean will be approximately
normally distributed
a) regardless of the shape of the population.
b) only if the shape of the population is symmetrical.
c) only if the standard deviation of the samples are known.
d) only if the population is normally distributed.
a
. For sample size 1, the sampling distribution of the mean will be normally distributed
a) regardless of the shape of the population.
b) only if the shape of the population is symmetrical.
c) only if the population values are positive.
d) only if the population is normally distributed.
d
The standard error of the proportion will become larger
a) as p approaches 0.
b) as p approaches 0.50.
c) as p approaches 1.00.
d) as n increases.
b