Review of Derivatives Flashcards
1
Q
The derivative of ƒ @ a:
A
lim (ƒ(a+h)−ƒ(a))/((a+h)−a) as h->0 or, lim Δƒ(a)/Δa as h->0
2
Q
Differential operator notation:
A
d/dx(ƒ(x))=ƒ′(x)
3
Q
d/dx(c)=?
A
0, for any constant c
4
Q
d/dx(ƒ(x)±g(x))=?
d/dx(u±v)=?
A
d/dx(ƒ(x))±d/dx(g(x))=ƒ′(x)±g’(x) *differentiation of sums is term-by-term!
u’±v’
5
Q
d/dx(xⁿ)=?
A
nxⁿ⁻¹, for any real n
6
Q
d/dx(kƒ(x))=?
A
kd/dx(ƒ(x))=kƒ′(x), for any real k and differentiable ƒ
7
Q
d/dx(sinx)=?
A
cosx
8
Q
d/dx(cosx)=?
A
−sinx
9
Q
d/dx(e^x)=?
A
e^x
10
Q
d/dx(ƒ(x)g(x))=?
d/dx(uv)=?
A
ƒ′(x)g(x)+ƒ(x)g’(x)
u’v+uv’
11
Q
d/dx(ƒ(x)/g(x))=?
d/dx(u/v)=?
A
(ƒ′(x)g(x)−ƒ(x)g’(x))/((g(x))^2)
(v’u−uv’
12
Q
d/dx(tanx)=?
A
sec^2x
13
Q
d/dx(cotx)=?
A
−csc^2x
14
Q
d/dx(secx)=?
A
secxtanx
15
Q
d/dx(cscx)=?
A
−cscxcotx