Pure Maths Flashcards
Pythagorean triples
4,3. 5
12,5. 13
24,7. 25
15,8. 17
Sin(A)=
Cos(90-A)
Tan θ
sin θ / cos θ
Sec x
1/cos x
Cosec x
1/sin x
Cot x
1 / tan x = cos x / sin x = cosec x / sec x
Y = sec θ (graph)
- symmetry in y-axis
- has period 360
- Asymptotes of -90, 90, 270
Y = sec θ (graph domain and range)
- domain x∈R, x≠90, 270, 450
- range y ≤-1 or y≥1
Y = cosec θ (graph)
- has period 360
- vertical asymptotes for which sin x = 0 (180, 360)
Y = cosec θ (graph domain and range)
- domain x∈R, x ≠ 0, 180, 360
- range y ≤-1 or y≥1
Y = cot θ (graph)
- has period 180
- vertical asymptotes for which tan x = 0 (0, 180, 360
Y = cot θ (graph domain and range)
- domain x∈R, x ≠ 0, 180, 360
- range y∈R,
Sec^2x
1 + tan^2 x
Cosec^2x
1 + cot^2x
Arcsin x (domain and range)
Domain -1≤ x ≤ 1
Range -90 ≤ arcsinx ≤ 90
Arccos x (domain and range)
Domain -1≤ x ≤ 1
Range 0 ≤ arccos x ≤ 180
Arctan x (domain and range)
Domain x∈R
Range -90 ≤ arctan x ≤ 90
Un (arithmetic)
A + (n-1) d
Sn (arithmetic)
N/2 (2a + (n-1) d)
Un (geometric)
Ar^(n-1)
Sn (geometric)
(A (r^(n-1)))/r-1
Sum to infinity ∞
A/1-r
|r| < 1
V=ab^t
A= initial value
B= the annual proportional decrease (-ve)/increase (+ve) in the value of the car
Y=log 9 (x+a)
(0, log 9 (x+a)) (-a+1, 0)
Discriminant
b^2-4ac >0 2
b^2-4ac = 0 1
Proof for sum of arithmetic series
Proof for sum of a geometric series
Proof for sum to infinity
Sigma notation proof
Sin (2A)
2SinACosA
Cos(2A)
Cos^2A-sin^2A
2cos^2A-1
1-2sin^2A
Tan2A
2tanA/1-tan^2A
Sin4X
2Sin2Acos2A
1-cos^4A
(1+cos^2A)(1-cos^2A)
E = km + b
K is the increase in E when m increase by 1
b is E at the beginning or the fixed charged for E
Y = f(x) + a
X, y+a
Y = f(x + a)
X-a, y
Y = af(x)
X, ay
Y = f(ax)
X/a , y
Y = -f(x)
X, -y
Y = f( - x)
-x, y
Gradient for parallel and perpendicular
Parallel = same gradient
Perpendicular = neg reciprocal
Y=kx
If x increases by 1 unit, y increases by k units
Ncr formula
N!/r! (N-r)!
Cosine rule
A^2 = b^2 + c^2 -2bc cos A
Area of triangle
1/2 ab sinC
Y = sinx
- repeat’s every 360 and crosses the x axis at (-180, 0, 180, 360)
- maximum of 1 and minimum value of -1
Y= cosx
- repeat’s every 360 and crosses the x axis at (-90, 90, 270, 450)
- maximum of 1 and minimum value of -1
Y=tanx
- repeat’s every 180 and crosses the x axis at (-180, 0, 180, 360)
- has no maximum or minimum
Unit of a vector
- size of vector is 1
- a (2
3). |a| = √3
Unit = (2/√3)
3/√3)
Collinear
Lie of the same line
Find the gradient of the tangent to the curve
- Find f’(x) = dy/dx
- Sub the given point into f’(x) = gradient
- Form equation