příklady Flashcards
jak testovat rozptyl
EXCEL
VAR.S
směrodatná odchylka
EXCEL
SMODCH.VÝBĚR.S
Pearsonův korelační koeficient
EXCEL
CORREL
nebo jamovi
koeficient determinace (R2) předpovídající proměnnou
EXCEL
CORREL()*CORREL()
JAMOVI
linear regreseion
regresní koeficient
b0 přímky
EXCEL
závislá proměnná (X)
B0=INTERCEPT
B1=SLOPE
regresní koeficient
b1 přímky
EXCEL
závislá proměnná (X)
B0=INTERCEPT
B1=SLOPE
relativní četnost
(to s těma knihama)
podíl počtu jednotek s danou hodnotou znaku počtem všech jednotek statistického souboru
bodový odhad pro průměr pro celou populaci
EXCEL
normální průměr
konfidenční interval
JAMOVI
horní limit
dolní limit
t-tests
one sample t-test
Při výpočtu 95% konfidenčního intervalu pro proměnnou jsme získali výsledek ve tvaru
[233.4,267.5].
Co se s intervalem stane, pokud bychom použili 99% interval spolehlivosti.
interval bude širší
Při výpočtu 95% konfidenčního intervalu pro proměnnou jsme získali výsledek ve tvaru [37.0,41.0]. Co se s intervalem stane, pokud bychom použili 90% interval spolehlivosti.
interval bude užší
liší se (oboustranně) od teoretické hodnoty
22 příklad
JAMOVI
t-tests
one sample t-test
potom
hypotesis
test value (tam to číslo ze zadání)
Pracujeme s hladinou významnosti 1%. Získali jsme p-hodnotu rovnou 0.006. Které z následujících tvrzení platí?
Protože nás zajímá rozdíl vzorku od teoretické hodnoty, použijeme jednovýběrový test. Je-likož je p-hodnota menší než hladina významnosti, můžeme zamítnou nulovou hypotézu ve
prospěch alternativní.
Získali jsme p-hodnotu rovnou 0.63. Pokud by ve skutečnosti platila alternativní hypotéza a my správně interpretovali výsledky testy, které z následujících tvrzení platí?
(a) Chyba I. druhu
(b) správný závěr
(c) Chyba II. druhu
Jelikož v populaci platí alternativní hypotéza, ale my jsme nulovou nezamítli, učinili jsme chybu II. druhu.
Při čtení metodické části bakalářské práce jste narazili na následující části:
H0 : u = U0
HA : u > U0
Dále je v textu napsáno, že 0 = 46. Které z následujících tvrzení platí?
Alternativní hypotéza zachycuje stav, kdy je skutečný průměr populace vyšší než daná hodnota. Použijme tedy jednostranný test.
Testujeme, že průměr populace ze které pochází vzorek, je menší než teoretická hodnota Uo