Pharmacology S10 Flashcards
Vaughan Williams Classification of antiarrythmia
Class I
Na + Channel Blockers
Class II
Beta Blockers
Class III
Prolong Action Potential
Class IV
Calcium Channels Blockers
Class one divisions give examples
Na + Channel Blockers
Ia Quinidine
Ib Lidocaine
Ic Flecainide Propafenone
Class Ia give examples
Quinidine
Class Ib give examples
Lidocaine
Mexiletine
Class Ic give examples
Flecainide propafenone
Class I mechanism of action
- Mainly block fast Na + channels
- Weak K + channel block (1a) ¯C onduction velocity ¯D epolarisation amplitude ¯A utomaticity ¯P hase 4 slope ( decreases all )
- increase Depolarisation threshold
- Alter duration of action potential
Effect on Action Potential
Class la
Class lb
Class lc
Class Ia e.g. Quinidine
Intermediate Na + Block
Action Potential Duration Effective Refractory Period ( increased in both )
Class Ib e.g. Lidocaine
Weak Na+ Block
¯Action Potential Duration ¯E ffective Refractory Period ( decreased in both )
Class Ic e.g. Flecainide
Strong Na+ Block
Action Potential Duration « Effective Refractory Period ( no change maybe 🤷♀️)
Lidocaine
Pharmacokinetics
Adverse effects
Clinical use
Class Ib agent
- Rapid dissociation half life ~ 0.1s
- Binds open & inactive Na + channels
- Pharmacokinetics
- Adverse effects
- Clinical use
Extensive first pass metabolism iv administration Short half life
Negatively ionotropic Seizures Nystagmus
Ventricular tachycardia post MI
Flecainide
Pharmacokinetics
Clinical Use
CI
Class 1c agent
- Also blocks outward K + channels
- Long dissociation half life ~ 10 s
- Binds open Na + channels only
- PR, QRS and QT intervals at normal rates
- action potential in atrial tissue at fast rates
- Pharmacokinetics
- Clinical Use
- Adverse effects
Well absorbed orally Metabolised by CYP2D6 & renal elimination Elimination t 1/2 10-18 hours
Prophylaxis and treatment of SVT/PAF
Contraindicated with history of IHD/HF – Causes lethal dysrhythmias
Non-selective Beta Blockers give examples
Propranolol
Sotalol
b1
selective blockers
Long acting
Short acting
Longer Acting Atenolol Bisoprolol
Shorter Acting Metoprolol Nebivolol Esmolol
Mixed
b1 a1 blockers
Carvedilol
Labetalol
Adverse Effects & Clinical Use of beta blockers
Adverse effects
• Clinical Use
Heart failure Bradycardia Bronchospasm Peripheral limb ischaemia Loss of hypoglycaemic symptoms Fatigue
Rate control of AF/Atrial flutter Cardioversion AVRT/AVNRT 2°prevention VT/VF Heart failure Hypertension Ischaemic Heart Disease
Class III give examples
amiodarone & sotalol , dofitlide
Class III mechanism of action
action potential duration
- Block slow outward K + channels
- refractory period
- QT interval ( increased all )
- Suppress re-entry circuits
- However can risk of early after depolarisation leading to torsade de pointes
- Most commonly used are amiodarone & sotalol
Amiodarone mechanism of action
Acute
Blocks fast Na + and Ca 2+ channels – Class I & IV action Use dependent Blocks acetylcholine gated K + channels - Class II action Less negatively ionotropic than Class I/II/IV agents
Chronic
Blocks outward K + channels – Class III action Inhibits cell-cell coupling Prolongs action potential duration & refractory period Slows AV node conduction Prolongs QT interval
Pharmacokinetics of amiodaron
- 30% bioavailability
- Large V d » 66 L/kg (approx 5000L in a 70kg individual!)
- I.v. or oral loading dosing required
- Elimination t 1/2 10-100 days
- Hepatic metabolism by CYP450 3A4 to Desethyl-amiodarone (DEA)
- Dose adjustments not required in renal/hepatic/cardiac dysfunction
Adverse Effects of amiodaron
Short term
Long term
Phlebitis & hypotension with iv administration Requires central access when given iv
Pulmonary fibrosis Hypo/hyperthyroidism Hepatic dysfunction Corneal microdeposits Slate grey skin/photosensitivity Peripheral neuropathy Proximal myopathy Increases defibrillation threshold for ICDs
Drug Interactions with amiodarone
Inhibits CYP3A4 and CYP2C9 & P-glycoprotein Dose reductions of warfarin, digoxin and flecainide may be required
Clinical Use of amiodarone
Acute indications
Chronic indications
Acute indications
Atrial Fibrillation Atrial Flutter Ventricular Tachycardia When other antiarrhythmics contraindicated
Chronic indications
2°prevention of VT/VF When other antiarrhythmics not tolerated
Sotalol
Racemate
- d-sotalol pure class III agent
- l-sotalol has b blocker and class III action
- Blocks outward K + channels
- Reverse use dependence
- Lowers defibrillation threshold for ICDs
- Doses < 120mg bd has mainly b blocker action
- Higher doses have class III action
- Adverse effects
- Clinical use
b blocker adverse effects Torsades de pointes
Paroxysmal AF
Class IV
- Diltiazem & verapamil block slow inward Ca 2+ channels on SAN and AVN
- Slow phase 4 depolarization
- Slow conduction velocity
- Increase refractory period on AVN
- Dihydropyridine calcium channel blockers (eg nifedipine, amlodipine) act on vascular smooth muscle & have no antiarrhthymic effects
Verapamil & Diltiazem
Adverse Effects
Clinical uses
Verapamil
- Diltiazem
- Adverse Effects
- Clinical use
iv or oral Sustained release preparations Negatively ionotropic Drug interactions with digoxin & amiodarone
Less negatively ionotropic than verapamil Sustained release preparations
Bradycardia Heart failure Constipation
Rate control of AF Cardioversion of AVRT/AVNRT Antianginal/antihypertensive
Other Antiarrhythmic Drugs
Adenosine
Digoxin
Magnesium
Adenosine mechanism of action
Main action as an AV node blocker
- Activates A 1 receptors in the heart
- A 1 receptors are G i linked ® Inhibits adenylate cyclase ® ¯cAMP levels
- Activates Ach K + channels in SAN and AVN ® Hyperpolarises cells
- Reduces automaticity, increases AVN refractory period
- t 1/2 » few seconds
- Associated with transient chest tightness
- Used as an iv bolus to diagnose/treat SVTs
Digoxin
Mechanism of action
Inhibits Na+/K +ATPase
- Direct cardiac effects
- CNS mediated effects
- Combined effect
+ve ionotrope
Decrease ¯SNS outflow increase PNS outflow Sensitizes baroreceptor reflex ¯decrease Automaticity of SAN and AVN
Increase Refractory period of AVN ¯decrease Conduction velocity of AVN
Phamacokinetics of digoxin
Oral biovailability 70-80%
- Large V d » 4-7 L/kg
- 20-30% protein bound
- Loading dose required for rapid onset of action
- 2 compartment model kinetics
- Elimination t 1/2 36-48 hours with normal renal function
- Renal excretion unchanged by P-glycoprotein
- Digoxin clearance µ GFR
- Reduce dose in elderly & renal impairment
- Loading usually in 2 divided doses to minimise risk of toxicity
- Plasma digoxin levels checked 6-8 hours after dosing
Drug Interactions with digoxin
Pharmacokinetic
Pharmacodynamic
Pharmacokinetic:
• Pharmacodynamic:
Digoxin Levels Propafenone, quinidine, amiodarone verapamil, spironalatone, cyclosporine Likely mediated by P-glycoprotein
Digoxin Levels Erythromycin, tetracycline
Beta blockers, verapamil, diltiazem, flecainide
Diuretics
Adverse Effects of digoxin
& Signs & symptoms?
Narrow therapeutic index » plasma level 1-2.6 nmol/L
- Toxicity enhanced with ¯plasma K+
- Cardiac toxicity
- Signs & symptoms
Bradycardia Atrial/ventricular/junctional ectopics AVN block Atrial tachycardia with AVN block Accelerated idioventricular tachycardia
Delerium, fatigue, confusion, nausea, vomiting anorexia, diarrhoea, blurred & yellow vision (xanthopsia)
• Severe toxicity can be treated with antibody fragment therapy (Digibind)
Clinical Use of digoxin
Main use is rate control in atrial fibrillation
- Heart failure
- No mortality benefit
Magnesium
- iv Mg 2+ used to treat Torsades de Pointes
- Also digoxin toxicity
- Mechanism of action unknown
- No benefit to chronic administration
Spontaneous AF
What drugs best to use
Drug options: Flecainide Propafenone Amiodarone
Spontaneous SVT
Drug options ?
Drug options: Adenosine Flecainide Betablocker Calcium Channel Blocker Amiodarone
Ischemia – Myocardial Infarction
Drug options
Lidocaine
Amiodarone
QT prolongation 2°anti-psychotic drug options ?
Magnesium
Classes of diuretics
Carbonic anhydrase inhibitors § Osmotic Diuretics § Loop Diuretics § Thiazides § Potassium sparing diuretics § Aldosterone antagonists § ADH Antagonists
Carbonic anhydrase inhibitors give examples
Acetazolamide
Dorzolamide
Carbonic anhydrase inhibitors mechanism of action ?
Side effect ?
Sodium bicarbonate diuresis
Excretion of Na ,K & PO3
Metabolic acidosis , hypokalemia
Osmotic diuretics
Give examples
Mannitol
Osmotic diuretics
Mechanism of action
Filtered at glomeuruls increase osmotic gradient throughout nephron , excessive water loss
Hypernatremia ( dilution )
Loop agents give examples
Site of action ?
Furosemide
Bumetanide
Thick ascending limb of loop of Henle
Loop diuretics mechanism of action ?
Side effect ?
Inhibit Na/Cl reabsorption
Concurrent Ca/Mg exception
Hypokalemia
Thiazides diuretics
Mechanism of action ?
Inhibits Na/Cl reabsorption
Promotes Ca reabsorption ( hypercalcemia )
Hypokalemia
Hyperurecemia
Thiazides side effects ?
Hypercalcemia
Hypokalemia
Hyperuricaemia
Aldosterone antagonist
Give examples
Spironalctone ( canrenone )/ Eplerenone
What is the mechanism of action of aldosterone antagonist
Side effect ?
Inhibit Na retention ( Na K ATPase / Na flux )
Blunt K & H secretion
Androgenic cross-reactivity
Hyperkalemia
ADH antagonist
Give examples
Lithium / demeclocyclin
ADH antagonist mechanism of action
Reducing concentrating ability of urine in collecting duct
Other drugs with Diuretic activity give examples
Digoxin
Amiloride
Digoxin mechanism of action as a diuretic ?
Inhibits tubular Na/K-ATPase
Amiloride mechanism of action as diuretics ?
Inhibits Na channels in DCT / CD
• K+ sparing
Diuretics: Common Specific ADRs Thiazides Spironalctone Furosemide Bumetanide
Thiazide s
• Gout
• Erectile dysfunction
Spironalctone
Hyperkalaemia
Painful gynecomastia
Furosemide
Ototoxicity
Bumetanide
Myalgia
ACE Inhibitors / K + - Sparing Diuretics
Increased hyperkalaemia Þ cardiac problems
Aminoglycosides / Loop Diuretics
Ototoxicity and nephrotoxicity
Digoxin / Thiazide & Loop D.
Hypokalaemia Þ increased digoxin binding & toxicity
β- Blockers / Thiazide Diuretics
Hyperglycemia, hyperlipidemia, hyperuricaemia.
Steroids / Thiazide & Loop D.
Increased risk of hypokalaemia
Carbamazepine / Thiazide Diuretics
Increased risk of hyponatraemia
Major Indications
Specifically relating to diuretic use
HTN
HF
Decompensated Liver Disease
K sparing diuretics
Give examples
Amiloride
Decompensated Liver Disease
Drug options ?
Spironolactone § Loop diuretics
Potentially Nephrotoxic Drugs
ACE Inhibitors § Aminoglycosides: e.g: gentamicin § Penicillins § Cyclosporin A § Metformin § NSAIDs § ++ more Double Whammy if renal function is impaired
Management of Hyperkalaemia
Identify cause! § ECG § Treatment:
- Calcium gluconate
- Insulin / Dextrose
- Calcium resonium
- Sodium bicarbonate
- Salbutamol