Partial Fractions Flashcards
1
Q
- 2x - 5 / ( 4 + x ) ( 2 - x ) = A / ( 4 + x ) + B / ( 2 - x )
A
- ( First of all, identify whether the fraction is improper or proper, in this case it’s proper )
- ( Then look at the denominators and see what values are missing on the RHS compared to the LHS )
- 2x - 5 / ( 4 + x ) ( 2 - x ) = A ( 2 - x ) + B ( 4 + x ) / ( 4 + x ) ( 2 - x )
- ( Denominators cancel out )
- 2x - 5 = A ( 2 - x ) + B ( 4 + x )
- ( To work out values of A and B, you must substitute values of X that can cancel out that particular bracket )
- If x = 2
- 2 ( 2 ) - 5 = A ( 2 - 2 ) + B ( 4 + 2 )
- 9 = 6B
- B = - 9 / 2 = - 3 / 2
- If x = - 4
- 2 ( - 4 ) - 5 = A ( 2 + 4 ) + B ( 4 - 4 )
- 3 = 6A
- A = 3 / 6 = 1 / 2
- 1 / 2 ( 4 + x ) - 3 / 2 ( 2 - x )
- ( Keep it in terms with what is shown to you in the question )
2
Q
Content on repeated roots:
A
3x^2 + x + 1 / x^2 ( x + 1 ) = A / x + B / x^2 + C / x + 1
- ( x^2 is split into x and x^2 terms, consecutive terms )
3
Q
Given that, for x < 0, 2x^2 + 2x - 18 / x ( x - 3 )^2 = P / x + Q / x - 3 + R / ( x - 3 )^2
Where P, Q and R are constants, find the values of P, Q and R.
A
- 2x^2 + 2x - 18 / x ( x - 3 )^2 = P / x + Q / x - 3 + R / ( x - 3 )^2
- 2x^2 + 2x - 18 / x ( x - 3 )^2 = P ( x - 3 )^2 + Q ( x ) ( x - 3 ) + R ( x ) / x ( x - 3 )^2
- ( Denominators cancel )
- If x = 3
- 2 ( 3 )^2 + 2 ( 3 ) - 18 = P ( 3 - 3 )^2 + Q ( 3 ) ( 3 - 3 ) + R ( 3 )
- 6 = 3R
- R = 2
- If x = 0
- 2 ( 0 )^2 + 2 ( 0 ) - 18 = P ( 0 - 3 )^2 + Q ( 0 ) ( 0 - 3 ) + R ( 0 )
- 18 = 9P
- p = - 2
- If x = 1
- ( To find the last values, substitute values of the constants in order to find the last constant )
- 2 ( 1 )^2 + 2 ( 1 ) - 18 = - 2 ( 1 - 3 )^2 + Q ( 1 ) ( 1 - 3 ) + 2 ( 1 )
- 14 = - 8 - 2Q + 2
- 8 = - 2Q
- Q = 4
4
Q
Show that 39x^2 + 2x + 59 / ( x + 5 ) ( 3x - 1 )^2 can be written in the form A / x + 5 + B / 3x - 1 + C / ( 3x - 1 )^2 where A, B and C are constants to be found.
A
- 39x^2 + 2x + 59 / ( x + 5 ) ( 3x - 1 )^2 = A ( 3x - 1 )^2 + B ( 3x - 1 ) ( x + 5 ) + C ( x + 5 ) / ( x + 5 ) ( 3x - 1 )^2
- ( Denominators cancel out )
- 39x^2 + 2x + 59 = A ( 3x - 1 )^2 + B ( 3x - 1 ) ( x + 5 ) + C ( x + 5 )
- If x = - 5
- 39 ( - 5 )^2 + 2 ( - 5 ) + 59 = A ( 3 ( - 5 ) - 1 )^2 + B ( 3 ( - 5 ) - 1 ) ( - 5 + 5 ) + C ( - 5 + 5 )
- 1024 = 256A
- A = 4
- If x = 1 / 3
- 39 ( 1 / 3 )^2 + 2 ( 1 / 3 ) + 59 = A ( 3 ( 1 / 3 ) - 1 )^2 + B ( 3 ( 1 / 3 ) - 1 ) ( 1 / 3 + 5 ) + C ( 1 / 3 + 5 )
- 64 = 16 / 3C
- C = 12
- If x = 1
- ( Substitute constants )
- 39 ( 1 )^2 + 2 ( 1 ) + 59 = 4 ( 3 ( 1 ) - 1 )^2 + B ( 3 ( 1 ) - 1 ) ( 1 + 5 ) + 12 ( 1 + 5 )
- 100 = 16 + 12B + 72
- 100 = 12B + 88
- 12 = 12B
- B = 1
5
Q
6x^3 - 7x^2 + 3 / 3x^2 - x - 10 = Ax + B + C / 3x - 5 + D / x + 2
A
- ( This is an improper fraction, therefore requires long division first )
- ( Improper = long division )
- 3x^2 + x - 10 | 6x^3 - 7x^2 + 0x + 3 | ( Division )
- ( Division only gets you so far because the x values of the divisor cannot be bigger than the x values in the expression which is being divided )
- 2x - 3 = the Quotient ( The answer to the division )
- 23x - 27 = the remainder
- Ax + B = 2x - 3
- So A = 2 and B = - 3
- ( Use the remainder as the numerator and keep the denominator constant to find values of C and D )
- 23x - 27 / 3x^2 + x - 10 = C / 3x - 5 + D / x + 2
- ( factorise the denominator )
- 23x - 27 / ( 3x - 5 ) ( x + 2 ) = C ( x + 2 ) + D ( 3x - 5 ) / ( 3x - 5 ) ( x + 2 )
- ( Denominators cancel out )
- 23x - 27 = C ( x + 2 ) + D ( 3x - 5 )
- If x = - 2
- 23 ( - 2 ) - 27 = C ( - 2 + 2 ) + D ( 3 ( - 2 ) - 5 )
- 73 = - 11D
- D = 73 / 11 = 6.64
- If x = 1 ( Substituting values of D )
- 23 ( 1 ) - 27 = C ( 1 + 2 ) + 73 / 11 ( 3 ( 1 ) - 5 )
- 3 = 3C - 146 / 11
- 102 / 11 = 3C
- C = 34 / 11