Optica Flashcards

1
Q

Hallar amplitud (A) de superposición de oscilaciones armónicas

A

Tenemos x=x1+x2=[a1 exp(-iδ1) + a2 exp(-iδ2)]exp(-iωt) = Aexp(-iθ)exp(-iωt)
donde θ viene de ambos δ y A viene de a1+a2.
A es un número complejo. Su módulo es A^2=zz*=a1^2+a2^2+2a1a2cos(δ1-δ2)
Tenemos pues un término adicional con coseno que dep. solo de las fases.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Forbidden tech in representación compleja

A

Operaciones no lineales (e.g. ^2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Representación fasor onda

A

x=acos(ωt+δ)=a exp[-i(ωt+δ)]

Es un círculo de radio ‘a’ con angulo ωt+δ

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Encontrar ángulo en superposición de oscilaciones

A

A partir de Aexp(-iθ)exp(-iωt),

tanθ=Imz/Rez=a1sinδ1+a2sinδ2/a1cosδ1+a2cosδ2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Condición para superposición de ondas en (anti)fase

A

FASE: δ1=δ2
Entonces cosδ1-δ2=1, A=a1+a2 interferencia constructiva

ANTIFASE: δ1=δ2-π, A=a1-a2 intf. destructiva.
Si a1=a2, se cancelan las ondas.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Estrategia para estudiar superp. de ondas en direcciones perpendiculares

A

Eliminar el tiempo. Write x, y, as
x/a1=coswtcosδ1-sinwtsinδ1
y/a2=coswtcosδ2-sinwtsinδ2

Then, multiply the first eq. by sinδ2 (cosδ2) and the 2nd one by sinδ1 (cosδ1). You subtract & get two new eqs., both with RHS

…=…sin(δ2-δ1)
Now square them to get (w δ=δ2-δ1):

(x/a1)^2+(y/a2)^2-2(x/a1)(y/a2)cosδ=sin^2δ

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

cos(a+-b)

sin(a+-b)

A

cosAcosB-+sinAsinB

sinAcosB+-sinBcosA

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Type of curve by determinant

A

…pending

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Estudio puntos elipse (Lissajous)

A
x=a1cos(wt+δ1)
y=a2cos(wt+δ2)
xmax=a1 -> t=-δ1/w ... now replace in y
ymax=a2cos(δ2-δ1)=a2cosδ
Repeat a la inverse. All told,
{(+-a1, +-a2cosδ), (+-a1cosδ, +-a2)}
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Estudio orientación elipse (Lissajous)

A

Estudiando en t=-δ1/w (el máximo en y)
dy/dt=-a2wsin(δ)
que será + or - dependiendo de sinδ. Si es negativo, p.e., decrece -> horario=dextrógiro

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Estudio tipos de elipse por δ (Lissajous)

A

si δ=mπ, m=+-1,+-2,… es polarización lineal
si δ=mπ/2, tenemos una circunferencia (luz circularmente polarizada)
Es dextrógira si δ=π/2+2mπ
Y levógira si δ=-π/2+2mπ (con m=0,+-1,…)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Diferencial intensidad extinguida

A

dI = -αIdx

αe=αa+αs

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Potencia extinción

A

P = σe I [m^2 ]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Velocidad de fase

A

vf=ω/k

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Hallar fase global (θ) de superposición de oscilaciones armónicas

A

tanθ = (a1sinα1+a2sinα2)/(a1cosα1+a2cosα2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Velocidad de grupo

A

vg = dω/dk = vf - λd(vf)/dk

17
Q

Período onda

A

T=2π/kv=2π/ω

18
Q

ω ondas

A

ω=kv