OCS: Biomechanics Flashcards
Define: biomechanics
The study of the structure and function of biological systems by the methods of mechanics
Define: kinesiology
science of movement of the body
Define: kinematics
study of the geometry of motion without reference to the cause of motion
Osteokinematics vs Arthrokinematics
Osteo:motion of the bones around an axis ie - flexion, extension, abd, add, IR, ER Artho: motion between articular surfaces of two bones ie - spin,roll, and glide
What are the various types of levers?
Type I: see-saw, axis in the middle - ex. head and spinal column
Type II: resistance between axis and effort
Type III: effort between resistance and axis - ex. biceps
Explain the convex-concave rule
The convex surface of one bone moves on the fixed concave surface then the translation and rotation will occur in the opposite direction Concave moves on convex translation and rotation occur same direction
Is the convex and concave verified?
No, the shoulder contradicts it at times, while the knee has not been verified and pathological knees can also differ
Where is the location of the axis of rotation?
Non pathological: axis if typically in the convex portion of the joint Pathological joint: axis can shift outside of the joint
Why is it important to know the axis of rotation?
1.) knowing motion will occur in a cardinal plane only if the AOR is perpendicular to that plane, if it is not motion will occur in multiple planes 2.) Muscle function determined by line of pull to AOR 3.) knowing where to place the goniometer for ROM
Absolute vs Relative angle?
How is force related to strength
Force = mass x acceleration Strength is the ability to produce force
Can EMG signal quantify a muscle’s force producing/absorbing capability?
No. This is determined by: type of contraction (ecc, con, iso), length of muscle, cross sectional area, number of active motor units, rate of motor unit activation, specific tension, prestretch/ contractile Hx
Why is it important to know the components of force?
It is important to know which forces will be bad or harmful to a joint, and which ones will be better at strengthening the joint.
Force in terms of angular motion is called:
Torque or the moment arm
What is impulse and how can it be manipulated in order to prevent injury?
Impulse = the change in momentum, F = mass x change of velocity/time Therefore if the time is increased the force will be decreased. If there is a thicker shoe, a flexed knee, or stretch of the calf muscle during impact it decreases the amount of force transmitted.
Provide examples of the concept of a moment arm:
Forward head posture effectively increasing the apparent weight of the head, low back body mechanics
What are the benefits of having three different types of muscle actions?
Concentric: provides movement/ produces force Eccentric: to decelerate and shock absorb/reduces force Isometric: to stabilize
Explain the force velocity curve:
The greatest force can be produced with eccentric contraction which is mostly independent of force. An isometric contraction with no velocity produces the next most force. A concentric is velocity dependent contraction that produces the most force with a slow velocity.
In an isometric contraction what is the power?
zero, as long as there is a net joint moment
Why is eccentric strength important in the prevention of injury?
Muscle-tendon complex has the greatest potential to safely absorb or distribute energy which is primarily accomplished by eccentric contractions. If the muscle is not strong enough more of the energy is absorbed by the bone and ligaments which is can cause injury.
Is joint instability consistently defined?
No. Three common definitions: 1.) excessive and/or uncontrolled ROM resulting in dislocation 2.) small abnormal movement in a relatively normal movement i.e. may result in pain from impingement 3.) low stiffness, joint moves easily
What factors determine if load or force will cause an injury?
Magnitude, rate, duration, frequency, variability, location, direction
Is patellofemoral pain related to pressure between the patella and femur?
yes: there is always some pressure between the femur and patella, this is determined by the quad contraction force and the amount of contact between the surfaces. The smaller the contact area the stronger relationship to symptoms with increased force.
Do human tissues respond to all stresses the same way, i.e. compressive, tension, shear, bending, torsional?
No: This variation base on role is called anisotropic. Tendons respond well to tension, not well to shear, and not at all to compression. Cartilage responds well to compression Bone: handles compression best, followed by tension, with a bending force (one side has compression force and other has tension force) tension will fail first; torsional force will typically cause the bone to fail due to shear forces