Module 3 - Section 1 Flashcards
Random Phenomenon
considered a random phenomenon if we know what outcomes could happen, but we do not knw which particular outcome did or will happen
ex: coin toss, covid numbers
Probability Theory
probability theory, a branch of mathematics concerned with the analysis of random phenomena. The outcome of a random event cannot be determined before it occurs, but it may be any one of several possible outcomes. The actual outcome is considered to be determined by chance.
trial
each occasion upon which we observe a random phenomena
can be one coin toss or two if they are done together
outcome
after a trial, the result or value is the outcome
ex: 2 coin tosses: HT
sample space
the collection of all possible outcomes
event
combination of outcomes or a subset of the sample space
ex: event that dice rolled is even
A= or B =
the probability of an event is written as P(A) or P(B)
Venn diagram
a picture that depicts all the possible outcomes of an experiment
The outer box represents the sample space, and the appropriate events are circled and labelled
ex: box with numbers 1-6 written and 2,4,6 circled and labelled as the event that an even number is rolled
Tree diagram
visualize sample spaces with a small number of outcomes
each outcome on the tree diagram is represented by a branch of the tree
H ——–H
…-——-T
T———-H
…-——-T
probability
the probability of any outcome (or event) of a random phenomena is the proportion of times the outcome would occur in a very long series of repetitions (probability is the measure for the likelihood or chance of a future event)
always a nuber from 0-1
Law of Large Numbers (LLN)
the long run relative frequency of repeated events gets closer and closer to a single value
says nothing about the short-run behaviour
the relative frequency will only even out in the very very longggg run
equally likely probability
when the probability of all outcomes are equal
ex: fair die, unbiased coin
Total Probability Rule
The probability of the set of all possible outcomes of a trial must be 1
Compliment Rule
P(A) + P(Ac) = 1
P(Ac) = 1 - P(A)
Disjoint
or Mutually Exclusive
no common outcomes